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ABSTRACT
Numerical Solution of Stiff Systems of Ordinary Differential
Equations with Applications to Electronic Circuits

Jerrold S. Rosenbaum

Systems of ordinary differential equations in-which the
magnitudes of the eigenvalues (or time constants) vary greatly
are commonly called stiff. Such systems of equations arise
in nuclear reactor kinetics, the flow of chemically reacting
gas, dynamics, control theory, circuit analysis and other
fields.

It is often the case that the solution is smooth outside
one or more almost-discontinuous segments. However, during
an almost-discontinuous segment, there i§ a rapid (sometimes
almost-discontinucus) variation ia the snlution.

The research reported herein dévelops_a ﬁew A-stable
numerical integration technique forhs;lving stiff systems of.
ordinary differéntial equations. The-ﬁethods wﬁich<is-ca11ed
the generalized trapezoidal rule, is a modification of the
trapezoidal rule. However, the new method is computationally
more efficient than the Erapezoidal rule when the solution of
the almost-discontinuous segments is being calculated.

The basic aim of the new numerical integration technique
is‘to transform the original system of differential equations

to a new system of equations such that the eigenvalues of

i



the transformed system are smaller in magnitude than the
ef%envalues of the.ofiginal system. Also, the ratio of the
real parts of the largest to the smallest eigenvalue of the
transformed system is smaller than the same ratio for the
original system. A consequence of shifting thé eigenvalues
is that for tﬁe same accuracy, one can integrate the new
system of equations with a larger time step than is possible
for the original system.

Particular attention has been focused on numerically
integrating Ehe differential equations for a high frequency
model of a semiconductor network. It is shown how the
generalized trapexcidal rule can be used to integrate the
circuit equations more efficientlﬁ than the trapezoidal rule.
Also, because oﬁe has an a priori knbwledge of the structure
of the circuit equations and the nature of their solution,
one can obtain additional éomputationalreconomies when
integrating the circuit equations be the Qeneraliééd trapezoidal
rule. h !

In the appendix, there is a computer program for the

generalized trapexoidal rule written in PL/I.
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I. Introduction

Systems of 6rdinary differential equations in which the
magnitudes of fhe eigenvalues (or time constants) vary
greatly are common1§ called stiff. Such systems of equations
arise in nuclear reactor kinetics, the flow of chemically
reacting gas, dynamics, control theory, circuit anaiysis and
other fields. [1,12,14,18,20,213*

It is often the case that the solution is smooth outside
of one or more almost-discontinuous segments [21] (or transient
phases or boundary layeré). However, during an almost-
discontinuous phase, there is a rapid (sometimes almost-
discontinuous) variation in the solution. In addition, the
system of differential equations is usually asymptotically
stable --i.e., all the eigenvalues of the system of equations
are in the left half plane (LHP).

A similar stiffness problem arises when é paptial differ—
ential equation is approximated by a large system of ordinary
differentiaz equations. By_differenciﬁg oﬁe of the variables
(usually a space variable), the initial value problem for
the reSulting system of ordinary:differentiél equations
generally has a wide spread in time‘constants ( see section

II.1).

% : .
Numbers in brackets indicate references listed in Chapter VI.



For most numerical integration schemes, in order to
prevent the numerical solution from becoming unstable, the
maximum step size that can be used to integrate a system
of equations i; on the order of the smallest time constant
of the system. The-step size limitation necessitates taking
an excessively large number of steps to obtain the solution
in both the smooth and almost discontinuous segmenfs. In
particular, during the smooth regions, one-would like to use
step sizes that are on the order of the largest time constant
since the local variation is small, But, one must still take
small time steps (on the order of the smallest timg constant)
to prevent the numerical solution from becoming ﬁnstable.

In the case of.a semiconductor switching circuit, the
solution is slowly varying except at the switching "instants".
However, if one uses the usual integration schemes, which
are generally step length limited, the'iargest step size
allowable throughout the entire solution is on the order of
the switching time even though the solution may be almost
coﬁstant beéween switching instants.

The purpose of the research reported herein is to develop
a new numerical integration technique for stiff systems of. -
ordinary differential equations. The method, which will be
called the generalized trapezoidal rule, is a modification
of the trapezoidal rule., However, the new method is computation-
ally more efficient than the trapezoidal rule when the solution

of an almost-discontinuous segment is being computed,

»



Many different approaches have been suggested for
oBﬁaining the numerical solution of stiff systems of ordinary
differential equations. Almost all of the suggested methods
require the solution of a system of implicit (usually non-
linear) equations at each time step. In chapter II, fhere‘
is a discussion of some of the methods used to overcome the
usual step length limitations when integrating stiff systems.
In addition, there is a brief discussion of methods for sélv~
ing the implicit equations that are geqerated by the various
integration schemes. We also attempt to show how the intég;ation
methods are interrelated.

Chapter IIT is concerned with a new method for numerical
integration of stiff systems of ordinary differential equations.
The method is a modification of the trapezoidal rule. The
basic approach of the method is: (1) to modify the given
differential eqﬁatibns 80 that they are less stiff and
consequently "easier" to integrate; and (2) td use differing'
approaches to obtain the numerical solution duriﬁg the
alhost-disc;ntinuous and smooth sectioﬁs of the solution.

The objectives of the new method are to allow the user to
take larger time steps during the élmoszdiécontinucus'
segments of the solution and to do fewer iterations per
step in order to solve the implicit integrating equatiocns
while, at the same time, maintaining the same or improved
accuracy as compared with the trapezoidal rule. |

In the research reported herein particular attention

-



has been focused on numerically integrating the differential
equations for a high frequency model of a semiconductor
network [9,18,20,211. 1In Chapter IV, it is shown how the
integration method of the previous chapter can be used to
integrate the circuit equations and how, because of an a
priori knowledge of the stfucture of the circuit equations
and the nature of their solution, one can cobtain additional
economies when integrating the circuit eqﬁgtions.

Chapter V presents a summary of the results of the

previous chapters and suggestions for further research.



IT. General Problem of Stiff Systems

Py

1. Stability

In the general theory of numerical solution of ord{napy

differential equations, a major concern is the stability of

the numerical solution. Roughly speaking, the stability of

a numerical method refers to the behavior of the difference
between the actual and calculated solﬁtion as the number

of steps becomes large [14]. The values of the step size,

h, for which a particulaf integration method is stable, are -

a function of the characteristic roots, u; , of the integration
method and the eigenvalues, li-’ of the Jacobian of the |
system of ordinary differential equations being integrated
{4,10,11,12,14]. | | _

The region of the hA-plane for which all the character-
istic roots of the integration schemelafe-on or in the unit
circlé is called the region of staﬁility. If the étability
region is bounded, then the integration method is called
step length limited.

To demonstrate the general type of steb lenéth limitation
that can be encountered with stiff systems and the problems
that the step length limitation can cause, it is useful

to examine a linear system of ordinary differential equations:

(2.1) % = Bxy, x(0) = %,



where the eigenvalues of A are distinct and in the.LHP.
« If the real parts of some of the eigenvalues‘of A
.are very much larger in magnitude than the real parts of
others, the terms corresponding to the "large" eigenvalues
become negligible befy quickly. This type of behavior can
also arise with nonlinear systems of equations or even
with a single equation (see section III,3). All that is
required for a system to be stiff is that any transient-
be damped out quickly in relation to the steady-state sclution.
The difficulty in trying to use many of the common
numerical methods to integrate stiff equatiéns is well
known. A numerical method can be‘affecteé~by the transient
componients of the solution even after the effects of those
components have become negligible in the true solution.
Anglytically, this behavior 6f the numerical solution leads
to a restriction on the allowable step'gize. When ﬁany
numerical methods are applied to the 1iﬁe&r equations (2.1);
the step size restriction takes the form:
(2.2) | mgl <d, i=1,2,...,m
where h is the step size, and d is some consltéant ‘which is
typically about 1 to 6. If some of the_|li] are large,
equation (2.2) forces the numerical method to use a very
small step size in order to maintain stability, even though

the corresponding contributions to the true solution are

negligible.



For the linear system of equations (2.1); the analytic
sgiution is |
(2.3) x(nh) = enhAxo .
As a consequence, any numerical procedure must, in some
way, approximate ehA. Also, because all the eigenQalues
of A are in the LHP, the least one should require is that
(2.4) iiﬁig Xq = 0, | | |
where X is the value of the solution at the'nth point
in the calculation. ‘

When one applies the forward Euler, Hegn or traditional

fourth-order Runge-Kutta schemes to equation (2.1), it can

be shown that

- n
(2.5) x, = [M(hR)] Xq
where

I+2 - . Forward EBuler
(2.6) M(ZxE(TI+2 + 22/21 ' o "Heun

T +2 +2%/20 +2°/30 + 2%/41 Runge-Xutta |
Therefore, in orde£ to satisfy equation (2.4), one
must require that
(2.7) IM(ha) [l<1.
Since the eigenvalues of A are diétinct, there exists a
matrix P such that
-1

(2.8) PAP" ™ = diag(ly,...;2 ) = Y

Consequently, equation (2.5) can be rewritten as



n

(2.9) x_ = M(hPAP™ 1) P X,

P[M (hA)] P-l.xo

-’
and equation (2.7) can be reduces to
(2.10) | M(hhi)|<; for i=1,...m.
One can think of equation (2.10) as requiring that the
integration schemes be contraction operatops on the 1eff'
half hi-plane (or have spectral radii less'fhan 1.

In particular, for the forward Euler method, one has
that B
(2.11) Xp = Xao1 F hECE 5% 1)
P(1+hx)Pflxn_

1

Hence,
(2.12)  |1+mA|<1 for i = 1,...m
or, if all the eigenvalues areiféal;f
InA|<2 . | R

For the Heun method, the stability‘criterion is also
|nA|<2 and for the fourth-order Runge-Kutta method, the
critefion is |hi|<2.78 [61.

However, one is generélly interested in cbtaining
the solution over the interval t = [O,etmaglkjinl)].
If min Ili|<<max|lj|, thgn stabilitylconsidérations dictate-
a very small step size, h ==e?min]kjl_l), over the entire
interval even though fhe effects of the maximal eigenvalue

on the solution are negligible after the first few steps.

To demonstrate explicitly the problems caused by the



wide spread in the eigenvalues, two systems of ordinary

. :
differential equations (one of which is stiff) which possess
"almost" the same solution, will be considered.

The first system is

(2.13) gz =DV +C, V(O) [] , D= [ ] and C []

The solution to equations (2.13) are
_ _ _ -t
Vy(t) = V(t) = 2(1-e ) |
and the stability conditions are h < 2 for the Euler and
Heun methods and h < 2.78 for the Runge-Kutta methods.

If, on the other hand, one considers the system

(2.14)  dW _ _ 0. | -s00.5 499.5
e S RAW +C, WO = [ 5" » B =1 4995 -500.5/°
. s : L
¢ _[2] ‘ |

then .
Wl(t) - 2(1_e~t)_0.l ~-1000t |
W,(t) = 2(1-e 7)40.1e ~1000t
But, for ¢ > 0,02, one has that 0.1e71000% < 5 5 % 19730

or V~W for t > 0,02, However, the gigenvalues of A are
-1 and -1000, which dictates that h <:D.002 for the Euler
and Heun methods and h < 0.00278-for the Runge-XKutta method
[6].

Now, in both systems, one wishes to determine the solution
over the interval t = [0, Gyfljl. For the V equations,
one would need less than 10 steps to obtain the solution

» . w~



10
over the desired intérval. But, for the W equatioﬁé, o:ne
wonld require 1000 times as many steps to obtain the solution,
and increased precision might be needed for the calculation
because of the increased round-off error introduced by thel-
very large number of steps. |

From the example, one can see tﬁat the step size,

h, cannot be chosen to represent the information carried

by modes corresponding to the smaller eigenvalues. The step
size must be chosen to avoid any spurious amplification of
the modes corresponding to the larger eigénvalues of the sys-
tem of equations. Thus, if an integration écheme has a bound-
ed region of stability, one is forced to take exceedingly
small time steps throughout thelfiﬁe intérval for which

a solution is desired in order to prevent instability,

The instability is a result of an amplification of the

modes corresponding to the larger éigen?alues.

In the numerical solution of paftiaiidiffereptial
eqpations, the same type of problem is encountered‘when-one
approximates a partial differentigl equation by a system
of ofdinary differential equations. éor exaﬁple, consider

the heat equation:

2 ™.
(2.15) K _a__g = %}:1 , u(0,t) = u(L,'t‘) = 0.

ox
One of the standard first steps in the numerical

solution of equation (2.15) is to difference it in the
x (or space) direction. This given the following system

of ordinary differential equations:



(2.16) fﬂi

= K(Ax)Q(ui_l-2ui+ui+i).'
dat

“ In matrix notation, equation (2.16) becomes
-2 1 o
1-2 1 .0

(2.17) %% = Au where A = I
0 1 -2 1 -
el -2} .
. \ el . . — ’

and the eigenvalues of A are - o

_ -2 . 4m
(2.18) li = =4K (Ax) §1n Efi:l) .

Hence, for Euler's of Heun's methods, the étability
criterion is
n < (a0?0™t |

But Ax must be sufficiently sQali that equation (2.16) ; ,}i
is a good approximation to Ehe original eqpatidﬁ (2.15).5 
Consequently, we are restricted to using a smali h wiéh';;l f«;
all of the above methods, or any other step‘length'liﬁitéé:méthod,sr‘
even though the modes corresponding to eigenvalues closest
to the origin soon become the dominaﬁt components in the

solution.

rd

2. A-Stability

BN

For stiff systems, the concept of stability of a
numerical scheme, which was discussed in the previous section,
is not adequate because stability considerations generally

lead to schemes whose maximum step size is very small,



‘Ideally, the sfep size should be a fﬁncfion oﬁiyléf-thehfﬁtet
of-variation of the solution during the particulaflinterQal
being calculated and the desired accuracy (rathervthan being
a function of the glpbal properties of thé solution){A |
Also, for stiff systems, it is not enough‘tﬁat the transienf .
solutions be bounded; one needs a nuﬁ;riééi ﬁé;ﬁbé thaf -
insures one that all transient solutions Will eventually
die out, Towards these ends, the concépt of A-stability
was proposed by G. Dahlquist [31. i
Définition: A numerical method for Solving diffefential
equations is called A-stable if all solutions tend
toward zero as n— = when the method is applied with -
fixed positive h to any differential equation of the'
form: ' o
X = qx
where q is a complex constant with‘negative real part.,
In effect, the definition requires that for all eigen-
values in th? LHP, the numerical solutiqn corresponding to
those eigenvalues eventually die out regardleés of the
step size. As pointed out earlier, an A-stable method
may be régarded as one which acts.as a coﬁtractioh operator
for equations with eigenvalues in the LHP, although this
concept is not found in the literature on numerical integration
techniques.

The numerical integration of stiff systems has been



considered by many authorg (see references): It*isﬂknoénég;

thét all explicit schemes of the.linear multistép'and |

Runge-Kutta types are stép length limited and conééqﬁenfl§-

not A-stable. .Therefore attention must be focused on othéi

classes of 1ntegrat10n schemes (usually 1mp1101t). | “
No explicit Runge-Kutta scheme is A- stable becauséﬁﬂé;-

the recurrence relation it produces when applied to the_

test equation % = qx is Xnel = C(hqg) X where C(hq) is

a truncated expcnential series for ehq, If q is in the

LHP, then the sequence {xn} does not converge tp zero for

arbitrary positive h. In fact, for almost éver§ iﬁitial

0 %" * » for almost all values of q and h.

In a paper by Ehle [6], it is shown that Butcher s

value, x
fourth-order implicit Runge-Kutta scheme is A stable; but
the non-linear functional equatlons that must be solved

at each time step are considerablylmore—complex than those

for linear multistep methods. B

. [

An indirect approach to tﬁe integration problem for
stiff systeﬁ; is to transform the syséeﬁ'df differential
equations into a new system (suitably modified) that is
not stiff and to solve the latter:systemAby a conventiénal J
method which is step length limited. ILawson [13] proposed
what he called a "Generalized Runge-Kutta" scheme involving
the Jacobian matrix and exponential shifts in the variables |

(see section II.3).



12
The basic theory of stiff linear multistgp methods
was developed by G. Dahlquist [33]. He showed that no gxplicit
linear multistep method is A-stable, and he proved the
remarkable theorem that for fixed h, the most accurate
linear multistep mefﬂod is of order two, with the trapezoidal
rule having the minimum truﬂcation error bf ail secqnd‘ |
order A-stable schemes. Dahlquist also pointed out that
an iterative technique 1like Néwton—Raphson iteration must
be used to solve the implicit.integratiné equations because
the method of successive substitutions is inhénentl& step
length limited (see section II.5). | ; ‘
Mofe recently, Widlund [24] and Gear [8] have developed | )
higher order multistep schemes which ére, for practical ‘
purposes, not step length 1imi§ed. Widlund developed third
and fourth order schemes aﬁd Gear develobed second through
sixth order schemes. But, both authors ﬁse‘é "milder”
form of Dahlquist's concept of A-stabiiitye The approaches

~

of these two authors are discussed in section II.7.

Ve

3. Generalized Runge-Kutta Processes [13]

r

The basic problem inherent in all implicit integration
schemes is that one must solve a system of implicit non-
linear equations at each step. 1In order to avoid some of

these problems, Lawson [13] proposed to alter the stiff



!
P

system of equations so that an explicit Rﬁﬁge;xutfa scheme
will work efficiently on the altered set of equations.

et us consider the stiff system of equations
(2.19) % = £(t,x) , x(0) = Xq |
with a Jacoﬁian matfix, (3£/3x), and eigenvalues in the LHP.
Using the transformation o |

(2.20) zZ(t) = e'tAx(t)

where B is a real square matrix, it follows that

15

(2.21) 2 = g(t,z) = e-tA{f[t,etAz(t)] - AetAz(t)} s, Z(0) =

where the Jacobian matrix of the new system of differential

equations (2.21) is the matrix

29) _ o~tA(2L)etR _
¥z ]~ X ‘
= o TR (§£ - Ale"™
X

If [(3f/3x) - Al has small eigenvalues, one can apply one

©(2.22)

of the classical explicit Runge-Kutta schemes ( which are
step length limited) to the z equations and bé able to use
reasonable step sizes. Substituting the =z equations, (2.21),

into a classical Runge-Kutta scheme, it follows that

m
z =z +hZDb.k,
n+l n 4= + 1
—tnA tnA tnA
ky=e {f[tn,e zn] - Re zn}

)
]

-(t +c A i
. e z, +h Z ai.k.
i : 5=1 J 3

~(t, + c;h)R .
k, = e [f(tn+cih,pi) - Api] i=2,,..
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b

where aij’ bi and c. are the standard Runge-Kutta‘parameters'[lSJ.

tnA - * (tn+cih)A :
If one sets Y, = ¢ and k =e ki , then one
may rewrite equations (2.23) as

N _ :
#l = £(t,xy) - By

% ¢c.hA i-l (ci4c.)hA %
P, =e t x, +h z a, e bk,
j=1 1 _ ¥
(2.24)
* *
ki, = f(tn+cih,pi )y - Api
m m ' (1-c;)hA .
Xnel = e _xn+ h izl bie ‘ ki

3 RS

Now, if the c, are equally spaced on the interval [0,1],'as'ix
is the case with several Runge-Kutta schémes, fhe céﬁputatioéi
of the exponentials.is greatly simplified; Also, one choosés
A to be the Jacobian at some particular pgiﬁt(s) and uses
the diagonal Pade appro§;mations to calculate théwéxponentiai
fuﬁctions iﬁ‘order to maintain stability. o
Using a generalized Runge-Kutta scheme bésed on the |
usual fourth order Runge-Kutta scheme, Ld@soﬁ‘was able.to
increase the step size by a factor of between‘a and 32
(depending upon the particular test exémple)as compared to
the usual Runge-Kutta scheme, without increasing the error
in the numerical solution. _ ‘ . A

The author did not clearly specify how ofteﬁrto change‘

-~
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A and how to select h.

-

4. Implicit Runge-Kutta Processes [6] -

Rather than alfering the equations as does Lawson, Ehle
[6] proposed that the implicit Rnnge—Kuttaiprocesses that
were developed by Butcher [2] should be applied to solving
a stiff system. Butcher has proved that for'any positive
integer n, there exists an n stage implicit Runge~Xutta

process of order 2n of the form
n
X =x_+ h Z b.k.
n+l n j=1 +1
(2.25) n
ki = f(xn + hi§lB i=l,...,n
If Butcher's processes are applied to the test equation

.
1) J)

X = qx, then one gets a recurrence relation of the form
xn+ll= En,n(qh)xn
where En,n(qh) is the nth diagonal Pade approximation, which'
is A-stable for Re{qh)=0 (see section IIILS). Consequently
the implicif;Runge-Kutta methods.of Butcher are ﬁ-stabie.
For n = 2, the cocefficients of the fourtﬁ order implicit

Runge-Kutta process are ) .

1/4 - /3/6

Ppp = 1/4 P12 =
(2.26) By = 1/4 +/3/6 By, = 1/4
by = 1/2 b, = 1/2

Ehle developed some initial approximations to kl and k2

which enable an iterative process for solving the implicit

»



18:
equations to converge rapidly at each gtep.‘ Althbugﬂ he
did not clearly specify the iterative procedure employed,
it is probably successive substitutions. In addition,‘it

2
work as well as claimed, and why he has been able to avoid

is not obvious why his initial approximations to kl and k,
the step length limitations dinherent in successive substitutions.

5. Trapezoidal Rule, Backward Euler and Implicit Midpoint Methods

In 1963, G. Dahlquist [3] proved that no explicit
linear multistep method can be A-stable and that the maxiﬁum
order of an A-stable linear multistep method is 2. Moreover,
for fixed h, the method with the minimum truncation error
is the trapézoidal rule,

However, there are difficultiesrwhich‘can arise when
the trapezoidal rule is used. Applying it to a stiff linear
system X = Ax, where all the eigenvalues of A are in the

LHP, one obtains the equation:

v h _ '
(2.27) X - X, T §{Axn + Axn} =0 .

n+1 +1 i

% ‘
To solve equation (2.27), one can approximate X 41 by X
and apply a Newton-Raphson iteration to obtain a better

approximation to Xne1l For a general system of equations,

* Equation (2.27) can be solved exactly; but, for a general

system, an exact solution is not possible.



the Newton-Raphson iteration is used repeatedly to get in- _

creasingly better approximations to x until two successive

n+l

approximations to x. N+l differ by some specified small amount,
The number of iterations that is necessary for convergence

is often used to adgust the step size Whlch in turn, controls’
the truncation error of the entire procedure.ur - R

However, in the case of a linear system, the first

iteration yields the result#

- I +(1/2)Ah
(2.28) X, = C(Ah)x,  where C(Bh) = f—(ci//?)%

which is the exact solution to equation (2.27). Except for
rounding errors, further Newtoh-Raphson iterétioné,do not
alter the value of X041 that is given in equation (2.28),‘
Consequently, if one is not careful, counting the number of
iterations for the approximations to Xq41 O ¢onvergé caﬁ%“
be very misleading when one uses the numbef of iterations
to control the step size. | |
Also, even though |lC(Ah)}| = 1 for Re(X) < 0 (i.e. the
method is Aj§table), as h becomes 1ap§e, C(Ah) = -1, That
is, the numerical solution has a tendéncy towards slowly
damped oscillations which can be very troublesdme during

the calculation of the transient phases of the solution.

To avoid the oscillatory problem, one can use small

# In a matrix equation, whenever a fraction of the form

N/D appears, we are using the notation to mean the matrix

p 1N,



steps during the transient phases when rapidly changiné |
cemponents affect the sclution., But, once the amplitude of
the transients has become sufficiently small, one can start
using larger time steps that are adjusted to the rate of
change of the solution. _

A second way to cope with the oséiliationsnfor a genefél
equation is to use a smoothing brocess proposed by B. Lindberg
[15]. He suggested that one calculate the function values
42° Then one sets e
(2.29) Q =(1/4)(x_ + 2x + X 5)

n+l n n+l

n+2
- and continues the integration from ta (that is, backtracking

at the points €, t, .., and Tt

one step) using thersmoothed value, Qn+i’ as the function
value. |

A third way of coping with the oscillations is to‘ﬁse
the backwards Euler scheme. For a linea;’system,‘bnehobtains
the relation

(2.30)  x

— t t —
el - C (Ah)xn whepe ~ C'(Ah) = T

) - T -Ah

which is also A-stable for systems with eigenvalues in the LHP,
However, one has that C'(Ah)— 0 as Re(Ah)= -=, which is
desirable when the contributions to the solution correspons-
ing to the eigenvalues with large-negative real parts is

still significant. It must be remembered that the backwards
Buler scheme is only a first order scheme and that care must

be taken because the damping factor C’'(Ah) may be too strong

and consequently produce an underestimate of the exact

-~
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solution,

» It is dinteresting to note that in both cases the
multiplicative quotients, C(Ah) and Ccf(Ah), are Pade
approx1mat10ns to the exponential function [19].

H, J. Stetter [22] has pointed out that for fixed h, the

implicit midpoint method
rd - X

(2.31) Xpp1 "~ %q = f(tn+l/2’xn+l/2) where xn+l/2 = n+% I

is equivalent to the trapezoidal rule. Presently, it is not
known whether the implicit midpoint rule or the trapezoidal
rule is more accurate for a variable h. The last question

is important because a variable step size is usually used

when one appliés any integration scheme. At the moment,

G. Dahlquist [5] feels that the implicit midpoint method

may be better for variable h, but he does not have a conclusive

proof.

6. Exponential Pitting

The main concept behind{the work of W, Liniger and R.
Willoughby [16] is the use of families of scﬁemes where one
selects the parameters based on sﬁme judgement about: the solution.
Liniger and Willoughby consider two baéic families of integration
schemes :

- x = Bl(La)s,, + (k]

(2.32) X4l -

h? b-a)R 5
- a—-—[(b+a)$?n+1. + (b-a)R 1 4+ (h7)

R
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and

(2.33) xn+l

- %, =hIA-Dx,, + Mgl 4 ()
These schemes are A-stable in the range: |
0 £b-a =<1/3 and 1/3 < a+b s 2
for the first family of schemes and
00X s 1/2 .
for the second family of schemes.

It should be noted that in the second scheme X = 0 &ives
the backwards Euler method and A = 1/2 gives the trapezoidal
rule, Thus, the choice of A allows one to select either of
these two extremes or an "intérmediate" scheme at any pbint
during the integration. |

~ If one lets Xnel = r(v)(q)x, then a, b, and X can be -_
selécted so that r(v)(q) =e 4 +—6&h?) for appropriatervalaes
of p and q. This approach is callea exponential fitting. 1In
the case of equation (2.32), there is fitting at‘two points,
but for equation (2.33) there is fitting at only one point.

_ Fdr the;;inear equation X = Ax, the application equations

(2.32) and (2,33) yields

L I +h(l-a)r + h'-2--(]:\-5&)112
(2.34) X4l = 42 : 5 X
I + h(l+a)A + h7(b+a)A
4
and
_ I + hi\A
(2.35) X T R(I-OR *n

respectively.
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Equations (2.34) and (2.35) indicate the structure of.the
characteristic roots of (2.32) and (2.33) respectively and
point up the strong roll of the choice of a, b, and A in
determining the degyee of damping of the higher modes in the
numerical solution, | _ |

The authors [16] point out that during the transieﬁt
phases, one would 1iké X small (equivalent teo exponential
fitting for large q). But during the asymptotic ( or smooth)
phase, one would like to benefit from the increased accuracy
of the trapezoidal gﬁle ( A = 1/2), because the values of
q closer to zero are usually more important -- unless the
transient solution still affects the solution, In which case
a A less than 1/2 is desirablé to inhibit spurious oscillations.
This strategy has allowed them to use apprbximately the same
step sizes during the transient and the émooth phases, For
the case of the semiconductor equations ( see chapter IV); T.
E. Stern [21], found that a choice of X opposite to that
suggeéted bg Liniger and Willoughby was more efficient.

We should again emphasize the point that in order to
solve the implicit equations for each time step, we must use
a scheme like Newton-Raphson iteration and not successivé,
substitutioﬁs. For the integration scheme (2.33), successive
substitutions converges only if

nlall £ (1-A)"t <2 for 0 A < 1/2

and HJH, where J is the Jacobian matrix, is large if the
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system‘is stiff. That is, succe551ve substltutlons 1mposes
a step length limitation which was not 1nherent 1n the A-stable
scheme and the limitation is as severe as that 1mposed by a
typical explicit integration scheme. Interestingly, the
first step in succeééive substitutions is

flﬂ = x, + hE(E,%))

e

which is simply the forward Euler formula and not A- stable.
ey

Xoi1 is the first correction to the initial guess of X1 = %ge

n
The reasons for using the first integration scheme, (2.32),
instead of the second, (2.33), are that the additional terms,
which involve the second derivative, gain one some additional

accuracy and a second degree of freedom at the cost of

evaluating the derivative of the Jacobian matrix.

7. Global Extrapolation [14] ' .

One approach to increasing thé accuracy of any dintegration
schemé is to use a local or globai éxtrapolation‘procedure,
Expanding the error term for an integration scheme into an
nP term and higher order terms, one has that
(2.36)  x(h) = x(t ) + € (£ )hP + (KnP,
where xn(h) is the cohputed approximation to x(tn) using a
step size h. One also has that
(2.37) xa(h/2) = x(t ) + €_(t )(h) hp+l)

cémblnlng equations (2.36) and (2.37) to eliminate the



nP term, it follows that

-

P. ,h
(2.38) xgl)(h) o 2% (3) - xn(h)

2P -1
which differs from x(t ) by@(nP*™) - that is

2.39) Py = xe) + 0P,

The extrapolation procedure can be continued using step
sizes h/4, h/8, ... to eliminate successively one power of
h in the error term at each repgtifion, If the procedure is
used at each step before going on to the next step, it is
called local extrapolation.

Global extrapolation differs from local extrapolation in
that one first computes the X, Over the entire interval
desired using a basic step size h = hU‘ Then 6ne recomputés
the values of the solution over.the same interval using the
step sizes h/2, h/4, ... . Finally; one uses the various values
of X that were independently cbmputed - namely xn(h), xn(h/2),
_.. to extrapolate at each point. The big disadvantage of
globai extrapolation is that it requires considerably more
computer storage than does local extrapolation.

In the use of extrapolation, it is important not to
introduce instabilities into the numerical solution. In
the case of the trapezoidal rule, local extrapolation destroys
rhe B-stability of the scheme. But, one can still apply

global extrapolation, which does not affect the A-stability

of an integration scheme because the extrapolation is done
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after the entire integration is performed and not during the
integration [3,141,

In the case of the trapezoidal rule, at the ith point,
the error expaﬁsion is of the form ] '
(2.%0) xi(h) = xfti) + Ti(ti)h2 + T2(ti)h4_+ cee

Consequently, equation (2.38) becomes ‘

m_ ,h '
(2.41) xﬁl) } 4%, (3) - x (B)

m

4" - 1

and, in addition, each stage 6f the extrapolation increases
the accuracy by h2°

In general, the global extrapolation procedure can be
visualized as computing the following table

x(h) {1 () x$?(n)

i
(2.42) x‘i(h/z);xi})(h/z)

where the ximare_ﬁhe calculated values using the step size

specified and

o 4mxgm-l)(1_1 ) - x@m-—l)(y_)l
(2.43) xgm)(h) P Q) T Tk
) =

k
2 LU

It is important to remember that in order for the
extrapolation to work well, one must use a sufficient number
of Newton-Raphson iterations so that the error in solving
the implicit equations at each point is less than the error

desired through extrapolation.



8. Alternatives to A-Stability

e
As pointeq out earlier, A-stability impose; a very severe
restriction on the types of linear multistep methods which are
acceptable. Namely, methods can be of order_two at most and
must be Implicit. Consequently, in order to maintain acéuracy
for long time calculations, the step size may have to be
limited (even though there is not any problem of stabilify)
or global extrapolation ﬁsed. " But these limitations are not
as severe as those posed by stability. Several autho:s'have ‘
proposed alternate stability criteria for stiff systems that
have allowed them to develop higher order 1inear'mu1tistep
methods that satisfy their‘alterﬁate,criteria.
Olof Widlund [24] has pro?osed'h(a)—stability.
Definition: A lineér differencélméthod is A(a)-stable
for a € (0,II/2) if all solutions of the linear difference
method tend towards zero as t — « when the method ié b
applied with fixed h to % = qx, where q is a complex
constant and lies in tﬁé set
Sq =1 2 2 larg(-z)] < aé z#01}.
Widlund's definition requifes:that all the eigenvalues
are in a wedge shaped sector in the IHP (see figure 2,1b).
We should note that A(ll/2)-stability corresponds precisely to
Dahlquist's A-stability.

Widlund was able to show that for a € [0,lI/2) there are



A(a)-stable linear multistep methods of orders S:énd 4 (of o
defrees 3 and 4 reSpectively).. The methods are useful for
many problems, but if a is close toIH/z some of tﬁe paraméters
in the linear multistep methods become very large, théreby |
making the methods unsuitable for practical ﬁsésﬂin_éuéh cases.
There is also the usual difficulty in chaﬁging step_sizes
because the degrees of the methods are greater than 1.

A second alternative fo A-stability waswproposed bf c.W.
Gear [8], who developed the notion of "stiffly stable" schemes.
Such a scheme would be stable and accurate for eigenvalues in
a rectangular region of the hl?plane,which includes the‘origin'
and stable in all parts of the LHP to the left of the rectangle.
(See figure 2.1c.) Gear's criterion haé_enabled him to producé
up to sixth order linear muitistep methods. Hé also dé§éloped.
automatic précedures for gelectingAthe step size and ordér'of
the scheme during the calculafion. Hoﬁever, the dimensions of
the region of staBility that were given by Géar are D~ -6.1,
8 »,;n.s and 0. a0.1 (see figure 2.1c), which prohibits us from
having eigenvalues lying in the importént regiohs_in the LHP
above and below the rectanéie. ‘ |

If there is a single eigenvalue, l,vin the unstable region
of the LHP, then one can either increase of decrease h so that
hX falls within the region of stability. However, if there are
several eigenvalues along a ray in the LHP that basses through |

the unstable region, it may be very difficult to adjust h so
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that all the eigenvalues along the ray fall iﬁté thé regidn of
stdbility without making h unduly large or small [27];"

Also, because the stiffly stable scheme is variable order
and variable step size, it is exceedingly difficult to get
bounds on the error terms. In addition, there are the usual
difficulties that are assqciaﬁed with any linear muitisfeﬁ method
of degree (number of previous function values needed) greater
than one. Namely, starting_values must be coﬁputed for the
integration scheme by a special procedure and changing the step
size can be difficult.

C.s W, Gear [27] has pointed out that the coefficients used
in the stiffly stable scheme, particularly the sixth order
scheme are not optimal. However, an attempt is being made (in
the United Kingdom) to calculate better coefficients. P:‘ﬁ.'
Branin [26] hés found'thatAGear‘s sﬁheme works quite well on
the whole. During the almost-discontinuous segmenfs of the
solution, the automatic order selection prﬁcedure usuélly
selecté the second and third order séhemes, and during thé
smooth segments, a third through fifth order scheme is usually
selected. -

It should be noted that the trapezoidal rule with‘global
extrapolation can also produce truncation errors of the sixth
or higher orders. It has been found that the trapezoidal rule
with global extrapolation is the most accurate of the integration.
schemes for stiff systems that has been discussed but it is

also one of the most time consuming [141],



Figure 2.1a
A-stability

Figure 2.1b
A(a)-stability

Figure 2.lc
Stiffly Stable

: . _ . 4
Figure 2.1 @ Regions corresponding to various notions of stability
for stiff systems of ordinary differential equations.
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ITI. Generalized Trapezoidal Rule

-~

1. Description of the Integration Scheme

The new numerical integration scheme for stiff systems
or ordinary differential equations, that is presented in this
chapter, is a modification of the trapezoidal rule. The
scheme will be called the generalized trapezoidal rule. The
two major aspects of the integration scheme, that differ from
the trapezcidal rile, are:

(1) the use of different numerical integration techniques
for the smooth and the almost-discontinuous segments of the
solution; '
and (2) the transformation of the original system of equations,
during the almost~-discontinuous segments of the solution, to
a new system of differential equations that is less stiff,
and, consequently, "easier" to integrate.

The trgnsformation employed involves an exponential time
shift, related to the Jacobian df the original system of
equations. The resulting transformed system of equations will
have eigenvalues closer to the origin, and have a lesser
spread between the largest and the smallest eigenvalue than
the original system.

The objectives of the new method are:

(1) to allow the use of larger time steps during the
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integration of the almost-discontinuous segmenté of thé
solution and still maintain the same or improved accuracy as
compared to the trapezoidal rule, ,
and (2) to "lessen" the oscillatory problem that is inherent
with the trapezoidai rule (see section II.5).

Generally speaking, the approach of thé proposed
integration scheme is to use the trapezoidal rule with
Newton-Raphson iterations to solve the-implicit equations for
calculating the smooth segments of the sdlutién. During the
almbst—discontinuous segments, the equafions are transformed
to a "smoother™ set of equations by means of the transformation
suggested by Lawson [13]. The transformed set of equations
is integrated by means of the trapezoidal rule and both Newton-
Raphson and modified Newton-Raphson iterations are employéd .l
to solve the implicit equations.

The approach described herein differs from Lawson's
generalized Runge-Kutta methods [13] is several respects.

The transformation is applied to andg-stable integration
séheme and‘is only applied during the almost-discontinuous
segments in conjunction with a iinear time shift, in order to
reduce the norms of the matrices involved inlthe exponential
function; and Newton-Raphson and modified Newton-Raphson
iterations are used to solve the implicit equations in order
to reduce the amount of work per iteration.

A detailed description of the proposed scheme for the

smooth segments is found in section III.la and for the

-
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almost-discontinuous segments in éection III.1b. Step size
gontrol and techniques for differentiating between the smooth
and almost-discontinuous segments will be discussed in section
ITT.4.

The integration scheme for the smooth segments is a
relatively standard version of the traﬁezoidal rales whereas,
the integration scheme for the almost-discqntinuous segments

is a new approach.

la. Caleculation of the Smooth Segments

Consider the stiff system of differential equatibns:

(3.1) X = f(t,x), x(0) = Xg

If one applies the trapezoidal rule:

_ hro .
(3.2a) p =%, + 3%, + % 1+ e(t ,h),.

n+l

where
1

(3.2b)  e(t h) = Df-j‘ 26(0-1)x$37(t_+6n)a6

’ n 4 Jo n
is the error term [17], and one Newton-Raphson iteration to
integrate equations (3.1){ it can be shown that
0 . h 0
O )~ Brece x ) + (e, 5x0y)

(1) - 0 _ Cnnd n+1°Xp
QF

n+l - *n+l ~h gg)
I 2(ax (12 X0l

(3.3) X

0y . e - (1)
where Xn+1 is an initial approximation to Xn+]_ and )‘(n+1: 2

Usually, the

S

the first corrected approximation to X 41"

initial approximation to xn+l is

.(3.4) xggi = Xy

»



For additional correc?e& approximation; to Xp41? the
superscripts in equation (3.3) are simply increased by one for
each succeeding iteration; and equation (3.3) is repeatedly
iteraéed until two sucessive approximations to X1 differ by
less than some prescribed small amount. When the difference
1s small enough, it is said that the sequence of approxlmatlons,
{x (1)}, has converged to x .

n+l :
Equation (3.3) can be rewritten as

(1) _ (0 h(af (0)y4-1 (0)
(3.5a) N S [T - E(S§)(tnfl’ n+1)] Vil
where . _ - ' '
.50) Q)= KD - x) - BrECe LX) fctn+1,x§2{)]

From equations {3.5), it can be seen that the work
necessary for the first Newton-Raphson iteration consists of:
2 function evaluations |
1 Jacobian evaluation
1 matrix inversion
1 matrix vector product.
In order to calculate the amount of work necessary to
do the second gnd later iterationé, one must deéide whether
Newton-Raphson (NR) or ﬁodified Newton-Raphson (MNR) iter-
ations will be ﬁsed., For the firsp iteration, éqpa%ions (3.5);
both types of iterations are identical. For the second and
later iterations, both iterative échemes use equation (3.5),
with superscripts suitably modified. However, in the case
of MNR iterations, the Jacobian matrix is only evaluated
during the first iteration and never reevaluated for succeeding

iterations -~ that is, the same Jacobian is used for each

-
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iteration.
’ Hence, in the case of MNR iterations, the second and
later iteratiqns require:

1 function evaluation
1 matrix vector product.

In the case of NR -iterations, the Jacoblan matrlx is
reevaluated for each iteration. Thus, the second and later
iterations require: ’ |

1 function evaluation

1 Jacobian evaluation

1 matrix inversion

1 matrix vector product.

W. Iiniger [16] pointed out that if the initial approx-
imation, (+i, to x. +1 differed from x +J.tmrfkrn), g2l, then
the first two MNR iterations will dlffer from x -Inreth2g+l)
- and e«(th ) respectively; whereas, the first two NR iterations
will differ from X4l by @’(-1112~g+1) andle/(h4g 3) respectivgly.
If, as suggested, one used'equation (3.4) for the initial
approximation to x n41° then x(o) differs from X4l by’@ﬁh)l
--i.e. g = 1.~ This is true because the trapezoidal Tule ié
a.éonéistant integration scheme (i.e. its error term is of
order 1 or greater). ) ' | |

One should note that the matrix inverse called for in
equation (3.53) does not‘have to be performed. Equation (3.5a)
can be chénged'so as to allow one to solve a linear system of .

equations instead. (It requires fewer operations to solve a

linear system than to invert a matrix.)
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If one is solving a system of m equations, then the work

necessary for the first NR iteration is:

2 function evaluations
1 Jdecobian evaluation

3 2
m_+ 3?  2m multiplications
m2 + 3m .. .
—w—ﬁ—*ﬂ-d1v1510ns.

The second and later NR iterations require

1 function evaluation
1 Jacobian evaluation

5 4 3 2 + 2 -
o ? L multiplications
m2 + 3m L. . |
5 divisions,

and the second and later MNR iterations require

1 function evaluation

m2 + m multiplications.

In later sectidns, the above tabulations will be used to
compare the computational efficiency of the trapezoidal rule

and the generalized trapezoldal rule.

1b.. Calculation of the Almost*Discontinuous Segments

During'the almost-discontinuous segﬁents of the solution,
the original differential equations will be altered by means
of the exponential transformation suggested by Lawson [13]
(see section II.3). The effect of the transformation will
be to create a new system of equations such that all the

eigenvalues (those in the LHP and RHP) of the transformed

»



system are closer to the origin than the elgenvalues of the
ariginal system. In addition to Lawson's transformatlon,
time shifts will be performed in order to prevent the norms
of the matrices, thet appear in the expoﬁential traﬁsformetion,
from becoming too large. _ |

Consider the stiff system of differeﬂtial eepations‘
(3.6) = £(t,x), x(0) = | _
If x , the numerical approx1mat1an to x(t ), has already been
computed, a time shift, v
(3.7a) 'r‘=t—tn o
is performed. From‘equation (3.7a), it follows that
(3.76)  x(t) =x(t +T
and the diffefentiel equafions in the shifted veriables are

38) X = £(r,x); x(0) =

Applylng the transformation
(3.9) z{T) = e x(T)
to edpation_(3.8) yields‘

-~

o T X,
(3.100) £ = 9lr,2) = & Ke(r,e™2) - xz, 2(0) =

- and

(s.20p)  (H) =T (af - kJe"

It can ‘be seen from equatlons (3. 9) and (3.10) that the time
shift, equation (3.7), was needed to prevent excessively large
exponents in e-TK and eTK. Large exponents can cause precision
problems during the actual computation.

If one uses the trapezoidal rule with a step size h on
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equation (3.10), with a NR (or‘MNRJ'iteration and an initial
gpprox1mat10n of zg ) to zl, 1t fOllOWS that

Gty o0 L (0 1 - =) - Brot0,zy) + gch,z‘°))1
-1la Z =z - -
, S I- —(%E)(h Z(O))

or
| (z(O) 0)_§te-0K f(0,e K, OjﬁKz te f(h,e Z(O)) -Kz (0)3

I- e hKE(gf) - xIe™

(3.11c) 2(1) (0)
| 50) 0)‘—[f(0320)+e f(h’e ZCO)) K( +Z(U))]
| e T "-f( L) - x136™

Equation (3.11lc¢c) can be requtten as

(1) _ _(0) _ -kK.. _ h_f3f -1_hK (0)
(3.12a) zl ‘= zl T -e [z 2[(3x - k1] |

‘where ,

(3.12b) vco)u(z(o? 2) —[f(o,z e f(h K, (O)J-K(z +2{0)1.
To calculate the amnunt of work per 1terat10n, the manner

in which the matrix X is selected must be considered. Also;

the method for evaluatiné matrix exponentials must be discussed.
From equation (3.10b), it can be seen that tle magnitude

of the eigenvalues of the-Jacobian, (3g/%z), depend soleiy on

the difference [(3£/9x) ~ X]. The other two factérs, e—hx

and ehK, act as a similarity transformation. Consequently,

the matrix X will always be chosen to be equal to the Jacobian

matrix of the original system, (of/3x), at one of the ﬁreviously

calculated grid points.
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If X is changed at the point (t »% ), which corresponds
46 the time shifted point (0,2,) with time shift t , then
the new choice for X will be thé value-of the Jacobian,
(af /%), Qf the original system of equations at the initial
boint (tn,xn). A new value for K shoulﬁ be chosenvwhen th?, '
solution beiﬁg calculated has juét éﬁtered an almost-discoq-
tinuous segment or when the solution is already iﬁ an almost-
discontinuous segment and the iterations at the previous point
converged too slowly. n

. This particular choice of K at (tn,xﬁ) resultsrin a

significant reduction in the work in&olvéd'in.calculating
*ni1

equations (3.12) can be simplified to

2 =m0 - A0

. FPor the first iteration for the calculation of Xn+lA
. -2

" (3.13a)
where ' 7 .
(3.13b) v§°?=(z§°?-z0)-§{f(o,zO)+e i(h,e z(o)) Kz +z(0))]

because

(3 13¢) ‘e:hK[I - [(%§ - xJ1e™ = 1.

For the second and further 1terat10ns, if an MNR 1teratlon
is used, then equations (3.13) can be applied again. Howeyer,
if a NR iteration is useé, one must revert to quationé (3.;2)
because equation (3.13c) is no longer satisfied for a geﬁeralP

system of equatiohs (seé section III.3a for a discussion of a

linear system).

For the calculation of the exponential functions, the
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diagonal Pade approximations will be used bécause they are
Arstable and make optimal use of the powers of the matrix, hK,
that will be cgmputed. In particular, either the Ell or 522
approximations, _ - ‘ ‘
(3.14) By (nK) = [T - ThK1THI + %ﬁK]-+G3(HhK”3) N
[T - B+ k0?17 T+ K+ 3m0%1
O o

will be used because their error terms are of the same or

(3.15)  E,,(hK)

slightly better order than the generalized trapezoidal rule.
Tt is important to note that if global éxtrapolation is to be
used, a higher order Pade approximation may be necessary
(see section IX.7). '

In order to Qet increased accuracy in the Pade approx-

- imations, the argument reduction scheme,

I =e’

[e(27mK)42° _ (hK
is used. The bracketed expressioh is calculated using E11 or

(3.16)

Eyo

and then squared s times. Equation (3.16) effectively
decreases the norm of t%e argument of the Pade approximation
and thereby increases the accuracy 6f the apprqximation. In
practice, s = 4 or 5 is usually sufficient [183. In section
III.3b, there is a more detailed;discussion.of the error in
the Pade approximation. |

To calculate the amount of work per iteration, two pairs

of cases must be considered: using a new value for K, and using

an old value for K. For each

FJ
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possibility for K, either an NR or an MNR iteration can be used
fgp the seéond and further iterations. In addition to the work

per iteration, there is one extra matrix-vector product needed

i .fro .
to obtain xn+l m zl

When selecting a new value for K, the amount of work for

the first NR (or MNR) iteration, using equations (3.13), is-
2 function evaluations
1 Jacobian evaluation (for X)
2 Pade approximations
3 matrix-vector products
Y matrix-scalar product.

For the second and later MNR iterations, equations (3.13) can
still be used. The work per iteration is

1 function evaluation

3 matrix-vector products .

1 matrix-scalar product. o
. However, for the second and later NR iterations, one requiresfh

1 function evaluation

1 Jacobian evaluation

1 matrix inversion

& matrix-vector products

1 matrix-scalar product.
Clearly, it is preferable to use MNR iterations since a NR iter-
ation requires much more work per iteration than a MNR iteration.

When using an old value of K, all iterations must make use

of equations (3.12)., The first iteration requires

2 function evaluations

1 Jacobian evaluation

1 matrix inverse

6 matrix-vector products

1 matrix-scalar product.

For the second and later iterations, an MNR iteration requires
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1 function evaluation
6 matrix-vector products,
-~

and a NR iteration requires
1 function evaluation
1 Jacobian evaluation
1 matrix inverse
6 matrix-vector products
1 scalar-matrix product.

Again one should note that the matrix inverse called for
in equation (3.12a) and indicated above does not have to be
performed. Equation (3,12a) can be changed so as to allow one
to solve a linear system of equations instead.

When one is solving a system of m equations, and has
selected a new value for K, the amount of work for the first
iteration is

2 function evaluations

1 Jacobian evaluation
2 Pade approximations

4m2 + m multiplications.
The second and later MNR iterations require

1 function evaluation
4@? +m multiplications,

and the second and later NR iterations require

1 function evaluation
1 Jacobian evaluation

o 4+ 21m2 2m :

+ 3 < multiplications
m2 + 3m ' |
— divisions,

However, when an old value of K is being used, then the first

NR iteration requires
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2 function evaluations
1 Jacobian evaluation

- - 3 2
LU zém +.2m multiplications
2 K
B__%__E divisions.

The second and later MNR iterations need

1 function evaluation
6 m2 4+ m mltiplications,

-and the second and later NR iterations need

1l funetion evaluation
1 Jacobian ewvaluation

3 2 :
L 2§m + 2m multiplications
2 4 3m |
r_n_____é__ divisions.

In the later sectioné of thislchaﬁter, it will be shown
that the generalized trapezoidal rule is compﬁtationally more
efficient than the trapezoidal rule for computing almost-
discontinuous segments. The tﬁeoretical'error comparisons and
illustrative computer results presented later indicate that the
generalizea trapezoidal rule requires more work per iteration
but‘the over;ll amount of work needed to compute the almost-
discontinuocus segment is iess thén that reﬁuired by the trap-

ezoidal rule,

2. Rationale of the Integration Scheme

When an A-stable integration scheme is being chosen to

solve a stiff system of ordinary differential equations, a
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decision must be made as to how much detail one wishés to see
in-the various segments of the solutioh. This decision is
particularly crucial for the calculation of the almost-discon-
tinuous segments of the solution. |

If one wishes to obtain extremely fine details of the
structure of the solution during an almoét-discontinuous éeg—
ment, then extremely small step sizes of the order of the small-
est time constant must be used. In that case, the present
author and others [5] have suggested that high order explicit
schemes, such as fourth and fifth order Runge-Kutta schemes, be
used for the almost-discontinuous segments of the solution.

The small step size (or perhaps a reasonable fraction of it

such as 1/2 or 1/4) satisfies the,stébility criterion fq:_explicit
,échemes and the explicit schémes are mﬁch easier té impléméht
(there are no implicit equationé to éolve).

However, during the smooth portions of the solution, an
A-stable scheme will probably be needed because theldesired
step sizes will probably be outside the‘region of stability for
a step length limited scheme. It remains to be proved that
the use of an explicit scheme within it‘s region-of stability
does not cause stability problems.when one switches to an A-stable
scheme to calculate the smocth segments of the solution, although
it is probably true.

The generalized trapezoidal rule proposed herein is not

meant for obtaining very fine detailed solutions during the
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almost-discontinuocus sections. The basic aim of the scheme is
F? transform the original equations to a new system of equations
such that the eigenvalues of the transformed system are smaller
in magnitude than the eigenvalues of the original system, and
the ratio of the real parts of the largest toAthe smallest
eigenvalue of the transformed system is smaller than the same
ratio for the original system. A consequence of shifting the
elgenvalues is that fo? the same accuracy, one can integrate thé
new system of equations with a larger time step than is possible
for the original system, However, a.larger time step means
that one cannot expect to see as much fine detail as for a
smaller time step. | |
Therefore, the proposed scheme is primarily suggested for
the integration of systems of equations where one wishes to see
A'a moderate to coarse degree of detail, but with a relatively
high degree of accuracy; for the almost-discontinuous segments,
and is not interested in very fine detai;. - The proposed scheme
allows one to solve a smoother set of equations at the expense
of'having tg calculate a difficult traﬁsformation and having to
do more work per step thgn the trapezoidal rule. However, in-
the almost-discontinuous segments, the extra work is more than
compensated for by allowing one to use larger time steps when
solving the transformed equations as compared with solving the
original equations.

The other consideration in the proposed scheme is that
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the smooth and almost-discontinuous segments are calculated
différently. The reasoning behind this decision i§ that simple
A-stable schemes, such as the trapezoidal rule, work - o
very will when the solution, over the particular region being
integrated, is smooth. A transformation whose objective is to
smooth out the solution in a smooth region cannot help very
much since the solution of the original system is already
smooth., Therefore, the extra work necessary for:computations
using the generalized trapezoidal rule, as compared with the
trapezoidal rule, probably camnot bé favorable compensated for

by an increase in the step size (to be illustrated in section

III.3a).

3. Theoretical Error Calculations

The trapezoidal rule and the generalized trapeéoidal rule
discussed in section IIT.1 are both second order schemes.
However, it is constructive to compare the errors produced by
each scheme when each is applied to several examples where the
exact error can be calculated. In section YII.3a, three examples
are considered and the errors in the numerical solution usiﬁg
each scheme are calculated and tabulated for various step sizes..

In section ITII.3b, the errors incurred when one uses the

Pade approximation, E.. and 522, are discussed and tabulated,

11
The reduction in the error as a result of using the argument

scheme (3.16) is also considered. Errors for other Pade

»
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approximations can be found in [19].
-~

3a. Theoretical Errors for Various Ordinary Differential
Equations *

In each example, it will be assumed that all exponential
functions can be calculated exactly. The errors incurred
in calculating the exponentials will be discussed in the
next .section., Also, all calculations will be based on
a fixed step size.
Example 1:

The first example that will be qohsidered is the stiff
linear time invariant system
(3717) % = Ax, x(0) = X -
‘When the exponential transformation,
(3.18) 2z = e Cx,
is applied to (3.17), it follows that
(3.19) %% = e Cpe™Cy - Cz, z(0) = x,
If ¢ = A, then equation{(3.19) reéuces'to
(3.20) z' =0, z(0) = Xg
which can be solved exactly --i.e. no error is incurred in .

the numerical solution.

However, if C # A, but C ~ A and C and A commute, then

% The second and third examples in this section were

suggested by [51.
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it follows that

dz.
at

If we have that

(3.21) = (A-C)z, =z(0) = Xq -

P(R-C) << p(B) ,
where p(A) is the spectfal radius of A, then the trapezoidal
rule will give more accurate results for equation (3.21)
than for equation (3.17). Equivalently, for the same accuracy,
one can take larger steps when integrating equation (3.21)
than when integrating equation (3.17). 'Also, éince the
trapezoidal rule applied to a ;inear system is equivalent
to using the Ell Pade approximafion (withdut using the argument
reduction scheme), the errors in the coﬁputation'can be found
on tables (3.3) and (3.4) in section iII.Bﬁ.

Example 23 | |

For the second egample,'tﬁe inhomogeneous scalar

equation,

(3.22) % =qx + e, x(0) =1,

;i;l be congidered. The exact solﬁti&g to equation (3.22) is
(3.23) x =t 4 E%a[eSt—eqt].

Applying the trapezoidal rule with one NR iteration,

xﬁgg = Xn and step size h results. in
.l _ 51 (n-1)sh
(3.24a) X, = — X g * | —|e
1-7q 1-3q
2 2
' R (n-1)sh
(3.24b) . = Exn_l + Fe

where in 1s our numerical approximation to x(tn).-

»



49

From equation (3.24b) it follows that

(3.253) % = Ely (n-1)sh (n-2)sh Eze(na)sh.
4

+ [e + Ee +

0

.. 4+ ERZSh | pn-lyp

or

_ nsh n
(3.35b) x E XO I E -sh

because (3,25a) is a geOmetrlc pr0gre5510n
Applying the transformation
(3.26) z =& T -
to equation (3.22) yields
(3.27a) 2" =% z(0) =
where
(3.27b) @« = s-q
Use of the trapezoidal rule with one NR iteration,
. ﬁgi = zn and step size h, in Fhe transformed equation
(3.27) leads to
 Botn-1yhe, pra]

(3.28a) z, = z,1

o+ b[l+eha][l+eha+e2ha ...+e(n-l)ha]

(3.28¢)> E; = Zg + [%+e [i enﬁj

or :
. ah :
(.29 % = xe™ ?'Eﬁ“;l e
_“-e

where in is our numerical approximation to x(tn) using the

(3.28b)> Z_

Z

generalized trapezoidal rule.
Using equations (3.23), (3.25b) -and (3.29) with the

values:
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50

-1000
-1

q
S
n 12

nun

one can see from table (3.1) that in order to obtain a

solution with the accuracy of €5 after 12 steps, one can take

steps that are 10 to 25 times as large with the generalized

trapezoidal rule as with the trapezoidal rule.

Theoretical Errors for Example 2

E12 h-trap h-Gen, Trap
1074 6x107° 1.5x1075
Table 107° 3x107° ax10™%
(3_'1) - - . -
107° 1.25x107° 1.5x10° %
1677 5x10~° 5.5%10"°
1078 2,5x107° 2.5x107>
where
612 = desired error after 12 steps.
h="trap = step size for trapezoidal rule which achieves
the desired error, .
h-gen.trap. = step size for the generalized trapezoidal

The abaove table of errors was calculated using approx-

rule which achieves the desired error.

imately 17 digit arithmetic,

Example 33

The third example to be considered is the second order

non-linear system

(3.30) X

¥

whose exact

solution is

qx

2
X~ 4+ sy

x{0)

¥(0)
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< 2
_ st 0 2qt__st
= Yo ¢ 2q-s[le el

(3.31) X

y

By applying the transformation

() =)

(3.32)

where J is the Jacobian of equations (3.30),

a
e(2a8)t2 _

4
(3.33) _
v = Oe(q S?tu

»u(0)

,v(0)

*o

Yo

it follows that

If one applies the trapezoidal rule to equations .(3.30),

one has that

7t
_[1a
= x
n l—%q 0

(3.34a) _ n p D p “n

yn = El + K| 1 2

E1Es
where
' 14‘2‘5 l*%q T p2 h
(3.34b)  Ep =|——| By =|—3-| K =| 1w — + %
| 1-5s 1l jagoge 1

X

0

The use of the generalized trapezoidal rule to equations

(3.30) yields

= _ qnth
X, = xoe
i 2
§n - 2x0 (eqnh_esnh) + yOesnh

(3.35a) a-s

nh
o -

th(g)x [lie h][l eah:l
l-e

1-e06h
+ esnhhx [l+e [ < B
il-e

51
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where

(3.35b)

o

B

29 - s

q-s .
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Using equations (3.31), (3.34), and (3.35) with the

values:

one can

with an

q
5.
n

see

I

from table (3.2) that in order teo obtain a solution

accuracy of €

-1000
-1
12

12

in both x and y after 12 steps, one

can take steps that are 8 to 50 times as large with the

generalized trapezoidal rule as with the  trapezoidal rule,

Table
(3.2)

where

€

Theorefical Errors for Example 3

612 h-~Trap(x) h-Trap(y) .h-Gen.Trap(y)
1074 | ex107° ox10™ % 2x10™>

107> | 3x107° %10~ 1.5x1073

107° | 1.25x107° 1x10™4 6.5x10" %
1077 | sx107® 4xio‘5 5x107>

1078 | 2.5x107° Cox107% 2x10”°

12

= desired error after 12 steps.

h=“trap = Step size for trapezoidal rule for variable

specified.

h-Gen.Trap. = Step size for generalized trapezoidal
rule for y variable.

The column h-Gen.Trap.(x) has been omitted bécause the

generalized trapezoidal rule produces an exact answer for

Xn°
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When looking at the results of the calculation for Ehe
third set of equations (3.30), one must remember that in
the solution, x is rapidly changing, but y is slowly changing.
From equations (3.31), one can see that y.goes as e_St.with |
a slight'perturbation due to the second term. Fér 5 = -1
and q = -1000, the perturbation is 1e§s than 1/2000 --i,e,
it shows up in the third or fourth decimal places at most.
Thus, when using the trapezoidal rule to integrate equation
(3.30), it is the x equation that determines the step size
at the beginning Qf the numerical computation.

If one compares the step sizes for y in table (3.2),
one can see that there is not that much difference between
them. But, the solution to the y equations is smooth and we
should not expect a smoothing process to signigipantly
decrease the required stép sizé. Pér this reason the
transformation should be appliea only during the almost-
discontinuous segments and not during the smooth segments,

-

3b. Accuracy of the Pade Approximations [19]

™

The Pade approximations are useful for computing e,

where M is an n x n matrix, when the stability of the
approximation is an important criterion. For the Pade approx-

imations, one sets

(3.36) ™ < Ep,q(en) = %‘p_ﬂ___
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where NPq and qu aré polynomials with real coefficient§ and
of orders q andlﬁ respectively. The coefficients of N and
D are chosen 50 that qu agrees with the Taylor series expansion
of etM through and including terms of order (p+q). This

requirement leads to the equations [25]

(p+q—k) ql k
5.5 Np,q(™h = =0<p+q>'k (ot (0
P (
p+q-k)ip! RPN S
Pp,ql™ = k=0 (p+a)ki(p- k)" M)
In particular, 1
=tM
: I+ 2 .
(3.38a) Ell(,tM) = -]—:-:-—-—i-t—
StM
and Tl gm ke 202
(3.38b)  E,,(tM) = "i :lL? =
I-StMg5T M

In equation (3;36), if p;:q,_then the Pade approximation
is A-stable for all t» 0 when M has eigenvalues in the-LHP.
That is | \

| ey qCa0l<L |
for arguments with eigenvalues in the LHP,
As pointed out earlier, to increase the accuracy of

the Pade approx1mat10ns, the argument reductlon scheme,

-8
(3.39)  [ef? )27 _ ot

is used (seell9] for a proof ).

For the Ell and 522 approximations, the errors for

various t for selected values of s are tabulated below in

table (3.3) for Ell and table (3.%) for E22.

»
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Error in the Ell Pade Approximation (Ell - e )
” t et s=0 5=4 5=5 s=bH
-5 { 6.7%107° |-4.4*107Y -2.7%10"% -6.8%107° |-1.7%107°
-10 | 4.5%107> |-6.7%107Y ~1.3%107%} -3.6%107% |-9.2%1077
Tablel -50 | 1.9%10722 |-9.2%10" Y 2.9%107 1Y -1.9%1072%-1.8%10722
G35 3. 741074 |.9.6%107 | 2.5%107° | 8.4*10722 |3, 7%107%%
200 | 1.4%1078% |9.g*107Y 5. 7%1072 | 6.1%107%2 | 7.1%10™%>
250 | 2.6%10"179-0.8%107| 1.6%1072 | 5.3%107% | 3.7%107%?
Error in the E22 Pade Approximation (E22 - e-t}
£ et =0 =4 s=5 5=6
-5 | 6.7%107% lo.8*1072! 4.5%1077 |3.1%2078 |5.0%107°
.10 | 4.5%107% |3.0%107%| 9.9%*107® |6.1%2079 |3,8%10710
Tabld -50 | 1.9%10722 |7.9%1071| 5.9%10719| 1.2%10722| 5.2%10724
(3'4)-100 3.7%10°% [g.9%10" 1| 9.2%10714( 7.9%1037] 5.8%107%4
-200 | 1.4%107%% lg.4*1071| 2.2%1077 |8.4%107%7|6.2%10 ">
-250 | 2.6%107789.5%107| 4.6%10™° |6.9%107%2| 1.4%10772
From tables (3.3) and (3.4), one can see that depending
upon the accuracy desired, the Ell or Ezé approximations

with s=5 or 6 will be sufficiently accurate for calculating

the various exponential functions needed for the exponential

transformation used in the generalized trapezoidal rule.

One should note that the amount of work needed to compute

Eyp

»

with gq=m is the same as the work needed to compute El

1




56

2é approximation with s = m is

approximation with q = m+1,

with s = m+l. However, the E

more accurate than the E
-

11

Therefore, the E,, approximations will be used for computations.

4. Step Size Control and Detection of Almost-Discontinuous
Segments :

For a particular problem, the user always specifies

the maximum step size, h

. Por example, h is at most
TMaX max

the sample period for the solution or the points at which

the user wishes to see the value offéhe solution over the
range of integration. To begin calculating the solution, it
will be assumed that one will calculate an almost-discontinuéus
segment (unless told otherwise) and begiﬁ with a step size

h /16. The reason for the 1/16 is that the user may

= hmax
have specified a large hmax’ and, if h is too large, too
many iterations may haverto be done before the aﬁproximations
to the next point convergs.

During.the smooth segments, the step siée control that
wili-be used is a standard method based on counting the
number of iterations necessary to solve the implicit
trapezoidal rule equations (3.2). ‘If it takes one or two
iterations for the approximations to x

n+l
then the step size, h, will be doubled for the calculation

to converge,

of the next point. However, if the approximations have
not'converged after four iterations, then the results of

the iterations will be discarded and the calculation will
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be repeated with half as large a step siza as the oﬁe that
failed,

For the almost-discontinuous segﬁents, the amount of
work needed for changing the step size --except for doubling
the step size, which requires two matrix multiplications,
or else two matrix-vector procucts and some bookkeeping--

is considerable because e ¥

and ehK must be recomputed.
Therefore, the rule of thumb used for changing step sizes

will be that if the approximation to z. converges in two

1
or fewer iterations, h will be doubled, but if it takes
more than five iterations-then h will be halved and K reselected.
The reselection of X whenever h is halved is done in order to
reduce significantly the work for the first iteration with
the new h --i.e. one uses equations (3.13) insfead of t3.12).
The reason for changing h after five'iterations, instead of
four as in the smooth segments, is that changing h requires
alot_of work.,

The detection of whether one is calculating a smooth
segment or an almost-discontinucus segment is at best a difficult
task. If one does not have a priori information about the .
nature of the solution or the location of the smooth and
almost-discontinuous segments then there are two available
alternatives. One can calculate finite difference approxima-

tions to the derivative of each variable or one can count the

number of NR (or MNR) iterations needed to obtain the
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solution to the implicit integrating equations. The latter
approach will be chosen.

The procedure that will be used is as follows:
(1) if one is calculating an almost-discontinuous segment
and the step size fo£ the next step will exceed hmax/B’ then
one will say that one is in the smooth region and change to
the integration of a smooth segment of the solutionj but
(2) if one is calculating a smooth segment and the step
size for the next step will be less than hmax/32’ then
one will say that one is in the élmost-discontinuous.region
and change to the integration of an almost-discontinuous stép.
The cross-over point between the two tyﬁes of segments
is not the same in both directions. This is intentional and
is meant to prevent the numerical techniqué from oscillating
back énd forth between tﬁe two phases of the integrétion
scheme. If rapid osoillatidns‘between thewtwo phases were
permitted, then the value-of the approach in fhe almost-
discontinuou§ segments might be nullified due to the initial

overhead involwved.

5. I1llustrative Computer Results

In this section, the results of actual numerical comput-
ations using both the generalized trapezoidal rule and the
trapezoidal rule will be presented. The examples chosen are

the same as those analysed in section III.3a (Theoretical

»
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Error Calculations).
For the linear equations, the exponential functions
needed for the generalized trapezoidal rule were evaluated

by means of the E,, Pade Approximation with s = 5. However,

11
for the inhcmogenous.equations and the non-linear eqﬁations,
the Eyp Pade approximation with s = 5 was used. In each
example, the step size was controlléd by means of the method
suggested in section III.4. All computaﬁions were done_in
PL1 to approximately 17 decimal places on the IBM 360791.
Example 1: ' ‘ |

For the linear equation
(3.40) X = qx, x(0) = 1.
the solutions were combufed over the intervai t = (0,.25)
for q = -10, -100, and -1000. Maximum step sizes of h = .1
and .01 were used. N

In the tables below, "error™ means the error in the
numerical solution at t = LQSL "Oscillates" means that the
numerical solution was oscillatiﬁg because the step size
was too largg, and that the indicated efror is a poor measufe
of the solution over the entire interval t = (0,.25). "Iter"
refers to the number of Newton—Raphson iterations néédéd to
obtain the solution. Also, an error of 10 ° means that the

error occurred in a decimal position beyond the last decimal

digit printed out.



Table
(3.5a)

Table
(3.5b)

Table
£3:5¢c)

Computational Error for Example 1

q= -10 Trap.Rule Gen.Trap.Rule

h erTOT iter error “iter

max

1 1x1072 12 2x10°° 6

.01 1ix10™% 58 3x107° 29

q = -100 | Trap. Rule Gen.Trap.Rule

hmax error iter error iter

1 1.8x107° 12 1078 6
oscillates )

.01 1078 43 1078 29

q = -1000| Trap. Rule Gen. Trap. Rule

hmax error iter arror iter

1 2.6x10"T 12 1078 6 -
oscillates :

.01 2x10~7 50 1078 29
oscillates

From the three

tables above, one can see that for

comparable acecuracy, the generalized trapezoidal rule

allowed one to take step sizes that were 10 times as large
as the step sizes needed for the trapezoidal rule,
the generalized trapezoidal rule eliminated the problem of

oscillations that was evident in the computational results

for the trapezoidal rule.

Example 2:

For the inhomogenous equation

Also,

60
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(3.41) X = qx + e-tQ x(0) = 1.,
the solutions were computed over the interval t = (0,1/q) for
q = -100 and -1000 and for s = -1. The maximum stép siz;
for the integrations was 1 q but for the trapezoidal rule,
the integration was also performed for maximum step sizes
of 1/2q, 1/4q, 1,/8q and 1/16q.

Computational Errors for Example 2

q = -100 | Trap. Rule Gen. Trap. Rule
hmax error iter || error iter
Table 0.01 5x107° 10 1x10™% 10
{3.6a) -3 .
: 0.005 5x10 12 pmmmmm
0.0025 2.5x107° 18 [
0.00125 |4.3x10™% 24 R— ‘
0.000625 [ 1.1x10°% 40 || @ ---—--
q = =-1000| Trap. Rule Gen. Trap. Rule
h error iter error iter
max
Table 0.001 4.5x107° 10 2.4x10"% 10
(3.6b) - -
, , 0.0005 |4.5x10™° 12 || @ -----
0.00025 |1.6x107° 16 || @ -----
0.000125 | 4.3x10°% 20 || oo
|o0.0000625 1.2x10™% 24 Ji @ ——eeo

From the tables above, one can see that for comparable
errors, the generalized trapezoidal rule allowed an increase
in step size by a factor of 8 or more as compared to the

»

trapezoidal rule.
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It is difficult to compute the amount of work per iteration
for both integration schemes because it is not known how
m&gh work was needed for the function evaluations. It should
be noted, however, that the Pade approximationsawere'not
very expensive to compute for equation (3.41) because the
Jacobian of the system was constant. Cénseqﬁently, one needed
ﬁo use the Pade approximations to obtain the exponentials
only for the first integration step. For the remaining
stéps, the exponentials could be generéted by simply squaring
the previous values since the step size was doubled.
Example 3:

For the nonlinear system of equations

(3.42) :x = gx

y = %2 - sy, x(0) = y(0) = 1.,

the solutions were computédpbver the interval t = (0,1/9)
for q = -100, and -1000 and s = -1. The step sizes used
were the same as for example 2.

Computational Errors for fkample 3

q = =100 Trap. Rule ' Gen. Trap. Rule

max error(x) error(y) iter|lerror(x) efnor(y) iter
ab1e |0-01 51075 5.2x10°° 15 11.6x207° 3.4x10"° 10
(3-73) . 005 1.5x102 5.1x10"° 17 ——— —— oo
0.0025 [1.5x1073 s5.2x107° 19 - _—
0.00125 W.2x10"% 1.5x107° 24 —- cen
0.000625 [1.1x10™% 4.3x10™° 40 ——- —— e
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q=-1000 " Trap. Rule Gen.Trap. Rule
hmax error(x) error(y) iter|lerror{x) error(y) iter
0.001 4.5%x10° 1.3x10°° 11 [|2.4x10°° 1x10°° 9
Table : T _3 _s
(3.75y[0.0005  |4.5x107° 1.1x1075 13 e e
10.00025 |1.5x107° 4.8x107° 18 ——— e -
0.000125 [3.2x10"% 1.5x207° 24 - e -
0.0000625| 1.1x10™% sx1077 40 - .

The tables again show that the maximum step size can be
increased by a factor of over 16 when using the generalized
trapezoidal rule instead of the trapezoidal rule in order to

> There was no

- get errors of about 10 ~ in both x and y.
'oscillatory problem when using the.trapezoidal rule because
the step sizes were small, that is, the step sizes were less
than 2/q.
From the three examples considered in this section, it
can be seen that during the transient, the generalized
trapezoidal rule has two'advantages over the trapezoidal rule:
(1) the generalized trapezoidal rule allows one either
to take_larger step sizes while maintaining the same acéuracy
as the trapezoidal rule, or to take'the same step sizes and
increase the accuracy of the numerical sclution, and
(2) the generalized trapezoidal rule minimized the problem
Such oscillations are

of oscillations during the transient.

common to the trapezoidal rule.

>
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IV. Applications to Semiconductor Networks

«

1. Semiconductor Network Equations [21]

In this section, the structure of the differential equations
for a semiconductor network will be briefly discussed. We
will also point out some ways in which an a priori knowledge
of the particular structure of the network‘eqﬁations can be
exploited to reduce the computational effort needed to integrate
the equations.

The network equations are a special canse of the general

equation
(4.1a) z = f(t,z)
where. |

%
(4.1b) z = (x,u)

and x and u are vectofs. .The dynamic behavior of u can
usually be considered " fast compared with that of x. BAs a
result, the system of équations will be stiff.

Consider a semiconductor network composed of the following
types of circuit elements: independent voltage sources,
linear positive time-invariant capécitors, linear positive

time-invariant inductors, linear positive time-invariant

%
z = (x,u) means that z is the vector whose components are

= ¥ 2. = N Z = . =u'-.
2T X8y T XKoo Zpa Py T WeZpie T U2 0 Un

»
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- resistors, and semiconductor branches (edges). The terminal
characteristics of the semiconductor branches are assumed to
be of the form:
(4.2) ip = C(u)a + Mp{u)
where
iT is an n-vector of semiconducteor branch currents
u is an n-vector of semiconductor branch voltages
plu) = [Pl(ul),---,Pn(un)]t is an n-vector of carrier
densities |
C(u) = diag[Cl(ul),...,Cn(un)] is a matrix of incremental
capacitances (positivé for all u)
M is a constant symmetric non-singular n X n matrix.
The model of the transistor branches that is being employed
is the high frequency model whiéh allows for the close
approximation of high frequency effects such as rise time. [20j
Any network consisting of the above classes of elements
can be described by a set of equations of the form:
(4.3a) P% = Ax + Nu + y(t)
(4.3b)  C(u)d = Nox - Gu - Mp(u) + w(t)
where
x is an m vector of state variables associated with linear
reactive elements,
P and A are constant symmetric non-singular m X m matrices
derived respectively from linear reactive and

resistive element values.
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. N is a constant m x n matrix

G is a constant symmetric positive semi-definite n x n

matpix derived from linear resistive element values

y(t) and w(t) are pespeetively m and n vectors derived from

the independent voltage sources.

It is important to note that the non-linearities occur only
in equations (4.3b) --the equations associated with the semi-
conductor eleﬁents; In addition, because the time consténts
associated with the semiconductor equation (4.3b) areAusually
much smaller than those associated with the 1ineaf equations
(4.3a), the dynamics associated with u are generally much faster
than that associated with X, resulting in a stiffness
problem. |

Because of the wide variation in time constants, it is use-
ful to think of tﬁe solution as composed of two types of seg-
ments: |

(1) smooth segments where x-and u vary slowly at about

the Samé rate,
and (2) almost discontinuous segments characterized by a

very rapid change in u while x remains almost constant.
Behavior of type (1) is typical of digital wave forms between
switching instants, while type (2) is characteristic of
transients that occur’'at switching times.

Prom equatioﬁs (4.3), it follows that the Jacobian of the

system of equations is

3
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pia Py
(4a) t ) .
SN A-SG + SMp'(u)
where‘ -
(4.4b) S =8(u) =C *u) and

(4.4c) A= S'{diag[Ntk] + diag[Mp(u)l - G}

The matrices diaé[Ntx] and diagIMp(u)] are'diagonal
matrices whose ith diaéonal element is the ith element of the
vecfors Ntx and Mp(u) respectively and

E B | )
{4.43) pT(u) diag a ? \ ’_—Eﬁ;——
is also a diagonal matrix.
‘VPurthermore, it has been pointed out by Hachtel and
Rohrer [9] that it is often a very good approkimation to neglect
S! and, consequently, A. Hence, whenever the numerical integration
technique described in Chapter ITT Cails for the Jacobian of

the original system, the matrix

-1
p~la
(4.5) J=[ ::] [:i 1%:}
L | s S[-G+Mp'(u)]

will be used instead of the exact Jacobian matrix.

It should be noted that Jllaaﬁd Jl2 are conétant and the
only submatrices of J which véry are 521 and J22. Furthermore,
the only parts of J2l and J22 which vary are S(u) and p*(u).
The foregoing observations permit a reduction in computational

effort during both the smooth and the almost-discontinuous

segments of the calculation.

-
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During the smooth portions of the solution, one uses the
trapeéoidal rule,equation (3.5), to obtain the numerical
solution. Substituting equation (4. 3) 1nto equatlon (3. Sa),
one has that
(4.6) = - I_'EJ n+l

u n+l U

Substituting equation (4.5) in to equation (4.6), it can be

seen that
h h
(4.7) 1= I__J B SR T I DO ST RV P
. }.—}\J . h
2721 I = §J22 Loy Ly

For a fixed h, Lll and le are constantf Therefore, one can
perform a partiél Gaussian elimination of the L matrix and
store the result back in L (see[23]). |

Now, if h‘is‘varied,'tﬁen one éan.multiply the elements
in the upper rows of the partially feduced form of L, that
was generated for a previous value of h, by the appfopriate
ratio oflthe step sizes to get the partia;ly reduced form
of L for the ﬂéw h.

The savings in computational effort due to partially
reducing L and storing the result back in L depend upon the
nurber of components in the x and u vectors (m and n respectively.)

Another reduction in computational effort can be obtained
by noting that S(u) and p'(u) are diagonal matrices. Therefore,
when calculating J2l and Jy, (and consequently Ly and'L22)

. s . . 2
several of the matrix multiplications, which require n

o
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operations can be reduced to the multiplication of the rows by
thé‘corresponding element in the diagonal matrix, which requires
only n2 multiplications.

During the almecst-discontinuous portions of the solution,
sqvings due to the a priori knowledge of the structure of the
equations are more dramatic than during the smooth portions
of the solution.

As pointed out in séction IIT.1b, the matrix X, that is
used in equation (3.9) to transform the original s&stem of
equations, is alwéys éhosen to be equal to the Jdacobian matrix
at some previously calculated grid point. Let )

K., X )

(4.8) x=| 1 12

Kpy Ko

where the dimensions of the K submatrices are the same as the
corresponding submatrices of J. Since Jll and Jl2 are'constant,
it follows that _

=4 and X

(4.9) Kyp =993 12 = Y19,
Therefore, one has that
0 0
(4.10) [0-K] =
Jo1 X0y - gk

Substituting equation (4.1) and (4.10) into equation (3.12a),
it can be seen that )

| 0 0
(4.12) L= [% - %{J—Kgﬂ . .
- " 209Kyl Iy - 305Ky, ]

Il

2



70
Consequently, the use of the transformation, equation (3.9),
effectively yields a system where the first m rows of L are —

already reduced --i.e., the first m rows do not require

further Gaussian eliminations.

2. Detecticn of Smooth and Almost-Discontinuous Segments

As indicated in section I1IT.4, an a priori knowledge
of the nature of the solution.één be useful for detecting
whether a smooth or almest-discontinuous segment is being
calculated. As indicated earlier (section IV.1l), the smooth
segments are characterized by X and u both éhanéing at about
the same rate and the_almost-discontinuous segments are charact-r

erized by a very rapid change in u while X remains almost

constant.
1f we let

lol] = 22 Jax, |
(4.13a) Ax|l = = ¥ jAx,
7 7 mo 'l
and

ln

(4.13p) ][ = Eifllﬁuil

then a possible criterion for deciding which segment of

the solution is being calculsted can be based on the ratio

— 1A

as follows:

(1) if the smooth portion is being calculated, then

>
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it will be assumed that the smooth portion is still
« being calculated if

(4.14b) R > 1/16;
otherwise, it will be assumed that the almost-
discontinuous portion has-been enterad;

and (2) if the.almost—discontinuous portion is being
calculated, then it will be assumed that the almost-
discontinuous portion is still being calculated
if |

(4.14c) R < 1/8;
otherwise, it will be assumed that the smooth portion
has been entered.

We should note that, as before, the cross-over point is
not the same in both directions. This is intentional and is
meant tolprevent the numerical technique Irom oscillating back
and forth between the two phases of the integration scheme.
This criterion is also related to the criterion for separating
the two portions that was suggested by [18].

As before, it will be assumed that”the initial point
is in the almost-discontinuous section unless otherwise
noted. BAlso, the initial step size will be set at 1/16th
the maximum step size in order to prevent too many iterations
from being done to solve the implicit equations.

It is suggested by the present author that the new technique

for ihtegrating the almost-discontinuous segments be used if
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the criterion for being in the almost-discontinuous segment
of“the solution described in this sectiqn or in section
IIT.4 is satisfied. Otherwise, the usual trapezoidal rule,

which was described in section ITII.la, will be used.

3. Application of the Generalized Trapezoidal Rule to an

A stable ' Multivibrator Circuit

In this section, the numerical scolution of the differential
equations for an astable multivibratof will be used to
illustrate the computational efficiencies of both the trapezoidal
rule and the generalized trapezoidal rule. The particular
multivibrator that will be analyzed‘is shown@in figure (4.1).

By using the high frequency model of a transistor, the ériginal
circuit (fig. 4.1) is replaced by the circuit shown in
figure (4.2) where the incremental capacitances are shown in
dottedriineé.

- The state variable eé_uations for the high frequency

model of the astable - multivibrator are:

X, = £ (x,u) = l{u U e E) i = (u,-u f£ +u.)
1 1M R*73 RB 3 05 Cl 9]
. _ 1, "2 1 X9
Xy = £5(%u) = gy, g~ g, B 7 §B Y
(4.15) 2.
A — 1
Cc(usju3 = 93(X:u) —-fl(x,u) - Pc(us,us) - §2(u3-u5+E)

Colugdly = g400m) = £506u) = Fy(ugug) - F (3,06E)
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-

R

+ ~ +
‘ ! \

uy CC(u3)"r' l —T-CC(u3) u,

. \ '
p=s -
| 7 Ry, Ry ' M |
L : A
Ug CE(uS) —\: T FE(uB’HS) PEFu4,u6} T T CE(UG) u6
. _ \j_ : I// +

Figure 4.2 - H:'Lgh Frequency Model of Multivibrator in fig 4.1
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CE(uS)ﬂS = gS(X’u) = fl(X,U») - P (u ?us)

g 1 ,%2
+ ﬁﬁ(gz u4 u5+u6) + R?(uB ~uc+E)
(4.15) o
contt, — _ _
Celughiy = gg(x,u) = fzcx,u) E(u4 ug)
g |
+ _.(__._u g U ) + (u ~u +E)
Rp ey Rz
where
Cc(u) = CEgu) 4x10 4e40u + 2 pF
-5 40Vc 4OVE
F (v ,VE) =10 “[2(e -1) - 0.98(e ~1)ImA
s 40V, ~40V
Fo(V,Vp) = 207°[0.98(e ©-1) + (e  "-1)1 mA
(4.16) FpT0-2XKa
R =0.6 Kn
_ (Units: volts, mA, Ka,pE)
R=6.Kn - : -
E =10 vdlts
C1 = 02 = C (varied) pF

The variables Xy and X, are the charges on the capacitors

¢, and C

1 2 respectively, and iy u4, u_, and u6 represent

5
voltages within the transistor model (see figure 4.2).

If one writes equation (4.3) as

x x . '
(4.17) = Q + R(u) + T(t)
u u

where

4.18) =1 i
( Q oIyt 1
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-
R = -1 and
- C "Mp(u
(4.18) £ el
con'ty : P-ly(t)
T:
()

then, for the multivibrator equations, (4.15), the matrices in

equations (4.17) and (4.18) become

— —

0 1 0

0 o 1
-1
—CC (u3)Fc(u3u5)

-1
CC (-u4_)Pé(ru4, u6}

_~ml
CE (uS)PE( u3,u5)

"Czt:l(us)PE(”a,’ue)J

(4.19)
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Cc(uS)
. . T
0 C
(4.19) = ¢
continued G
0.
|
Pc(us,US)‘
Fc(u4,u6)
F (u,,u.)
_ﬁ. 4? 6"_4
One also has that =
30
(4.20) EE%%El = 10773

o 0 0
(u4) 0] 0
0 CE(u5) 0
0 0 CEfuBEJ
40u 40u
3 0 -39.2¢ > @
4Du4 , . 40u
0 80e 0. =39 .2e
401;.13 40uS
3.2 0 40e 0
’ 4Ou3 40u6
0 ~39.2e 0 40e

The matrix ~§Mp(u) is needed for the evaluation of the Jacobian

d
of_thé system of éqpations

(4.15).

For C = 200 picofaradsmand initial values

Xl = 0:
Xy = ~500.
ug = 0.
u, = -10.
Ug = 0.
Ug = 0.

the first almost-d

»

coulombs
coulombs
volts
volts
volts

volts

iscontinuous segment occurs between
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approximately t = 0 nanoseconds and t = 3 ns. The "correct™
solution at t = 3 ns was obtained by applying giobai extra—.
polation to the solutions that were calculated by means of
the trapezoidal rule with step sizes of 1/512 ns and 1/1024
ns.

In the tables below, the tabulated relative érror in
each ﬁariable (difference between the calculated and "correct®
solution divided by the "correct™ solution for each vériable)-
in the solution were caléulated By means of the generalized'ﬂ
trapezoidal rule and the trapezoidal rule for various maximum
step sizes. The exponential functions needed for the general-

ized trapezoidal rule were evaluated by means of the E22

Pade approximation with s = 4.
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?gble 4.la -~ Error in xl.(charge on capacitor Cl)
Method hmax Relative error Nuﬁber of iterations
Trap.rule 1/128 ns  2.0x10 > 1664
Trap.rule 1/256 ns 2.6x107> 1734
Trap .rule 1/512 ns  1.6X107> 3223
Trap .rule 1/1024 ns  4.2x10°% 6310

3

Gen.trap.rule 1/32 ns 4.6x10" 737

Table 4.1b -~ Error in X5 (charge in capacitor 02)

Method hoos Relative error Number of iterations
Trap.rule 1/128 ns  6.3x10™% 1664
Trap .rule 1/256 ns  6.1x107% 1734
Trap .rule 1/512 ns 4.3x10"% 3223
Trap.rule 1/1024 ns .1.8x10™% 6310
Gen.Trap.rule 1/32 ns  6.9x107% 737
Table 4.1c -~ Error in Ug {collector voltage on transistor le
Method hmax ﬁ Relative error Number of itefa%ions
Trap.rule  1/128 ns  1.2X107° 1664
Trap.rule 1/256 ns  1.2x107° 1734
Trap.rule 1/512 ns  5.5x107° 3223
Trap.rule 1/1024 ns 1.4x10° 6310
)

Gen.Trap.rule 1/32 ns 1.9x10° 937
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?Eble 4.1d -- Error in u, (Collector voltage on transistor T2)

4

Method hmax ’ Relative errbr Number of itefafions
Prap .oule 1/128 ns  1.1x107> 1664

Trap .rule 1/256 ns  1.0x10°° 1734

Trap.rule 1/512 ns  7.8x107" 3223

Trap.rule 1/1024 ns l.4x10_4. 6310

Gen.trap.rule 1/32 ns 5.5)(10-4 737

Table 4.1le -- Error in ug (Bnitter voltage on transistor Tl)

Method hmax Relative error Number of iterations
Trap.rule 1/128 ns  4.0x10 " 1664
Trap .rule 1/256 ns  2.2x10°° 1734
Trap.rule 1/512 ns  2.4X10°° 3223
Trap.rule 13024 ns  6.7x10°° 6310
Gen.trap.rule 1/32 ns  2.3x107° 737

Table 4.1f -- Error in Ue {Enitter voltage on transistor T2)

Method” hmax ) Relative-error Number of ife%ations
Trap.rule 1/128 ns  5.9x10° 7 1664
Trap.rule 1/256 ns  3.5X107° 1734
Trap.rule 1/512 ns 3.6x10°° 3223
Trap.rule 1/1024 ns 9.0x10°° 6310
5

Gen.trap.rule 1/32 ns 3.4X10° 737



81

From the above tables, it can be seen that thé generalized
trapézoidal rule with a maximum step size of 1/32 ns
produced a solution whose error was less than the error for
the trapezoidal rule with a step size of 1/512 ns but not as
accurate as the latter with a step size of 1/1024 ns.
Moreover, the generalized trapezoidal rule required approx-
imately 1/5 as many iterations over the interval t = 0 to
t = 3 ns as did the trapezoidal rule with hmax = 1/512 ns.
As was the case with the third example in section III.S,
for a given hmax the generalized trapezoidal rule and the
trapezoidal rule produced solutions with approximately the
same accuracy for the "slow™ variables (xl and xg), but the
generalized trapezoidai rulé produces mére accura%e solutions

for the "fast" variables (u3, Uys Ug

~ —~

» and us).
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V. Conclusions and Suggestions for Further Research.

”

1. Conclusicons

The research reported herein developed a new numerical
integration technique for solving stiff systems of ordinary
differential equations. The method, which is called the
generalized trapezoidal rule, is a modificétion of the trap-
ezoidal rule. However, the new method is cnnmutationally_more
efficient than the trapezoidal rule when the solution of the
almost-discontinuous segments is being computed.

The computation of the solution of the system of ordinary
differential equations is divided into two parts. For the
computation of the smooth segments of the solution, the trap-~
ezoidal rule with Newton~Rabhson iterations to solve the
implicit equations is used. However, during the almost-
discontinuous segments, the generalized trapezoidal rule with
bqth'NewthoRaphson and modified Newton-Raphson iterations
to solve the implicit equations is used to caleculate the
solution. The details of the computation for both types of
segments is found in sections III.la and ITI.1lb.

As pointed out in section ITT.4, the detection of whether
one is calculating a smooth or an almost-discdntinuous segment
is at best a difficult task. The detection method based on

the step size chosen by the integration scheme that was used



B3

in the research presented herein can be hazardous if the user

Eas specified a "very large" maximum step size, h It is

max
hazardous in the sense that the integration procedure might
choose the generalized trapezoidal rule instead of the trap-
ezoidal rule during the smooth segments. However, during the
smooth segments, the generalized trapezoidal rule is not as
computationally efficient as the trapezoidal rule, For a given
step size, both the trapezoidal rule and the generalized
trapezoidal rule produce solutions with approximately the same
accuracy. Since the generalized trapezoidél rule requireé
more work per step than the trapezoidal rule, the latter should
bé used for the calculation of smooth segments of the Solution.

Therefore, care must be taken not to specify a value for
hmax that will be much larger_ﬁhan the step size chosen by
the step size control procedure used with the trapezoidal rule.
If the user doeé not have experience in choosing a proper
maximum step size for a particular problem, he should do some
preliminary calculations with the trapezoidal rule and observe
the step siées selected.

The results discussed in sections 117.3 (Theoretical
Error Calculations), ITI.5 (Illustrative Computer Results),
and IV.3 (Computational Results for a Multivibrator Circuit)
indicate that the generalized trapezoidal rule is computation-
ally more efficient than the trapezoidal rule for computing

the solution during an almost-discontinuous segment of the
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solution. That is, the generalized trapezoidal rule enables

ohe to use larger step sizes and to do fewer iterations to

solve the implicit integrating equations during the almost-
discontinuous segments than the trapezoidal rule while
maintaining the same or improved accuracy as compared to

the trapezoidal rule. Also, the numerical solution produced

by the generalized trapezoidal rule did not have an oscillatory
behavior at step sizes for which the trapezoidal rule

produced an oscillating solution (even though the actuallsolution
was decavying exponentially).

The generalized trapezoidal rule is not meant for obtain-
ing Qery fine detailed solutions during the almost-discontinuous
segments. The basic aim of the scheme is to take larger
time steps than is possible with the trapezoidal rule wﬁile
maintaining a predetermined accuracy in the solution.
Consequently, if one needs very fine details of the solution
during the almost-discontinucus segmeﬁts, the trapezoidal
‘Tule, or pephaps step length limited schemes such as explicit
Runge-Kutta methods should be used instead of the generalized
trapezbidal rule. |

From the foregoing remarks and the results of the previous
chapters, it may be concluded that for stiff systems of
ordinary differential equations even though the generalized
trapezoidal rule requires more work per iteration than the
trapezoidal rule, the overall computational effort needed

to compute the almost~discontinuous segment of the solution
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is less for the generalized trapezoidal rule.

-

2. Suggestions for Purther Research

The research presented herein suggests several important
questions that should be pursued further. The applicability
of an exponential shift in variables to other A-stable
schemes should considered. Of particular intereét would
be the effects of the transformation on the concept of
exponential fitting [17], and on the implicit midpodint
scheme [22]. —

One would like to know whether the exponential trans-
formation would improve the computational efficiency of
exponential fitting. The exponential transformation has
a tendency to compress the eigenvalues, especially the
larger ones; whereas, the exponentiallfitting method tries
to approximate the decay of the larger eigenvalues. It
is ndt cleap how a combination of the two ideas would
perform in terms of computational efficiency.

The implicitrmidpoint scheme is closely related to the
trapezoidal rule and it is quite likely that exponential
time shifts would improve the computational efficiency in
about the same way that the transformation improves‘the
efficiency of the trapezoidal rule. However, this remains to

be demonstrated.
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The application of the exponential transformation to
the Stiffly stable multi-order scheme of Gear [8] is also
;} considerable interest. The compressing efféct on the
eigenvalues of the exponential transformation might alleviate
the problem of pooriy situated eigenvalues (see section IT.8).
Also, it would be interesting to note the effect of the !
transformation on the order of the scheme selected by the
dutomatic procedure.

A third direction for further research is teo find the
effect of the transformation on the h2 nature of the error
expansion for the trapezoidal rule. The fact that the
error terms for the trapezoidal rule can be expressed in
powers of h2 allows for a great increase in the computational
efficiency of global extrapolation. Thus, the question to
be examined is how the exact éxponiential transformation |
and the various Pade approximations (inconjunction with the
usual argument reduction scheme) chaﬁge the basic form of

the error expansions for the trépezoidal rule.
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VIL. Appendix

On the next several pages there is a listing of the PL/I
program used to calculate the results reported herein.
The program is set up for a maximum of 6 equations, but the
declaration statements can easily be changed to accomodate

any other number of equations.



91

(NOUNDERFLOW) :GTRAP: PROCEDURE OPTIONS(MAIN);

/* GENERAL}ZED TRAPEZO!DAL RULE IWNTEGRATION*/

DECLARE (G1(6),GF(6),21(06),ZF{6),2ZGS(6),X(6),INITIAL(G),

V(BJ JACOB(G,6), LJACOB(b 6),K(6,6),EKH(G,6),EMKH(bL,6),
H,T, TI,TF TSHIFT, FAC) BINARY FLOAT;

NEWDATA GET LIST (N,(INITIAL(I) DO I= 1 TO N));

X=INITIAL;

Zl=X;

PUT PAGE EDIT (' INITIAL VALUES=',Z1) (A,6 £(15,7));

PARTDATA:GET L1ST (TZERQ,TMAX,HMAX):;

. PUT SKIP DATA (TZERO, TMAX,HMAX);

EPSIL=,00001;
H=HMAX/16, ;
| TERTOTAL=0;
PUT SKIP DATA (EPSIL,H) ;
/*SET UP THE TIME FOR THE INITIAL POINT*/
TI=TZERO;
/* SET UP TIME SHIFT =/
START:T=0. ;
TSHIFT=TI;
IF ((TI+H) > TMAX) THEN H=TMAX-TI;
I TERSUM=0;
- Ll=X;

/*0BTAIN FUNCTION VALUES AT THE INITIAL POINT =/
CALL CALCJ(K,Z1,T);

CALL CALCG(GI,Z1,X,T,TSHIFT,K);

/*SET UP FOR ITERATIONS*/ :

I TERATION: TF=T1+H;

/* GET PADE APPROXIMIONS FOR THE CURRENT STEP x/
CALL PADE(EMKH,K,H,N); /*EMKH=EXP{-KH)=*/
CALL MTXIHV(EKH, EMKH, N, DET); /*EKH=EXP(+KH)*/
2F=11;

I TER=U;

I TERLOOP: ITER=ITER+1; ITERSUM=! TERSUM+1;
IF (ITER <= 5) THEN GO TO CALCULATE;
PUT SKIP DATA (H);

H=H/2.; GO TO ITERATION;

CALCULATE:CALL CALCG(GF,ZF,X,H, TSHIFT K);

IF (ITER > 1) THEN GO Tu WORK,
ZGS=ZF+{(H/2.)Y*(G1+GF);
GO TO ERROR;
WORK:CALL CALCJ(JACOB,X,TF);
/*IMPLIMENT TRAPEZOIDAL RULE FORMULA=*/

FAC=H/2.;

LJACOB=-FAC* (JACOB-K);

DO 1=1 TO N
LJACOB(I,1)=1,+LJACOB(!,1); END;

CALL MTXINV(LJACOB,LJACOB,N,DET);

V=ZF-Z1-FAC*(G1+GF);

CALL MTXVEC{ZGS,EKH,V,H):

CALL MTXVEC(V,LJACOB, 2GS, N);

CALL MTXVEC(ZGS, EMKH,V,N);
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IGS=ZF-1GS;
/*SEE IF ITERATION HAS CONVERGED YET*/
ERROR:DELTA=0,; XNORM=0,;

DO 1=1 TO N;

- DELTA=DELTA+ABSCZGS(1)Y~ZF(1)});
XNORM=XNORM+ABS{(ZF(1t}); END;

IF (XNORM ~= 0,) THEN DELTA= DELTA/XNORM

ZF=1GS;

IF (DELTA {= EPSIL) THEN GO TO CONVERGED;

ELSE GO TO ITERLOOP;
CONVERGED: =ZGS;

ITERTUTAL—ITERTOTAL+ITERSUM

PUT SKIP DATA (TF,H, ITERSUM, ITERTOTAL);

PUT SKIP EDIT (! Z=',ZI) (A,6 E(15,7));

CALL MTAVEC(X,EKH,Z1,N);

PUT SKIP EDIT (' X=',X)} (A,6 E(15,7));

SKIP:TI=TF;

IF (JTERSUM > 2) THEN GO TO DONEYET;

H=2,*H;

IF (H > HMAX) THEN H=HMAX;

DONEYET: 1F (TF >= TiMAX-1,E-G6*TMAX) THEN GO TO PARTDATA;
ELSE GO TO START;

/***************************************************/

/*FUNCTION VALUES FOR TRANSFORMED EQUATIONS Z'=G(Z,T)=*/

A G(Z,T)=EXP(-KT)Y*F(EXP(KT)*Z,T) -~ K+Z */

CALCG:PROCEDURE (ANS,Z,X,T,TSHIFT,K);
BECLARE (ANS(b) Z(b) X(6),K(6,6) ,W(6))BINARY FLOAT;
DECLARE (T, TSHIFT TP) BINARY FLOAT,
IF (T 7= 0, )} THEN GO TO NONZERO;
CALL CALCF(ANS,Z,TSHIFT);

CALL MTXVEC(W,K,Z,N);
ANS=ANS-W;
RETURN;

NORNZERO: TP=T+TSHIFT;
CALL MTXVEC(X,EKH,Z,N);
CALL CALCF(ANS,X,TP);
CALL MTXVEC(W, EMKH, ANS, N);
ANS=W;

CALL MTXVEC(W,K,Z,N);
ANS=ANS-U;
RETURN;

END CALCG;

/* MATRIX OPERATIONS PACKAGE - =/

MTXOPS:PROCEDURE ;

DECLARE (A(6,6),B(6,6),C{(6,6),Vv(6),wW(6),X(6,6))
BINARY FLOAT;
IDMTX tENTRY (A,N);
A=0,;
BO 1=1 TO N;
ACl,1)=1.;END;
RETURHN;
MTXMLT:ENTRY (A,B,C,N);

»



A=0, ;
DOl =1 TO RN; DO U =1 TO N;
ACL,J)=SUM(B(t,*)*C(*x,J)); END; END;
RETURN; . _
MPAPWRSENTRY (B,C, 1) ;
DO I =1 TO W; DO J =1 TO ni;
XC1,d)=SUM(B(I,*)*C(*,J)); END; END;
B=X;
RETURN; .
MTXINV:ENTRY (A,B,N,DET);
/*A = 8 INVERSE =/
A=B; CON=0.;
CALL MINV(A,HN,DET,CON); _
'F (DET = 0,) THEN PUT SKIP EDIT
("SIHGULAR MATRIX")(A);
RETURK;
MTXVEC:ENTRY (V,A,W,N);
DO I =1 TO N;
V1) =SUMCACT, =)= {*)); RETURN;
END MTXOPS;
/* 2,2 PADE APPROXIMATION TO EXP(-KT) =/
PADE : PRUCEDURE (EMKT,K,T,N);
DECLARE (EMKT(o,05),K(05,6),NUM(G,6),DEN(E,6),
Wb, 6),uusQ{b,6),C1,C2, T) BINARY FLOAT;
W2, %#%-4)=T*K; .
CALL MTXMLTIWSQ, W, W, N);
Cl=.5u00uU00UVUGUDGE+D;
C2=,0833333333333333E+0;
NUM==Cl*W+C2*WSQ;
DEN= Cl=W+(C2*WSQ;
DO 1=1 TO N;
NOMCT, E)=1,+NUMCE, 1) ;
DEMCY,1)=1,+DENCI, 1);END;
CALL MTXINV(DEN,DEN,H,DET);
CALL MTAMLT(EMKT, DEN, NUti, H) ;
D0 =1 T 4
CALL MTXPWRCELKT, EMKT,N); END;
RETURHN; :
END PADE;
FUNCTIONS: PROCEDURE;
DECLARE (JACOB(O,0),AKS(0),X(6)) REAL FLOAT;
/% CALCULATE THE JACOBIAM AT THE GIVEN POINT %/
CALCJ: ENTRY(JACOR,X%,T);
/* IMSERT A ROUTINE TO CALCULATE THE
JACOBIAN HERE */
RETURHN;
CALCF: ENTRY (ANS, X%, T);
/* FNSERT A ROUTINE TO EVALUATE THE RIGHT HALD
SIDE OF THE EQUATIO!N HERE =/
RETUR!
EtiD FUNCTIGHS;

END GTRAP;
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